TY - CONF A1 - Geier, M. A1 - Eberstein, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Völkel, L. A1 - Böhme, R. A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Impact of laser treatment on phosphoric acid coated multicrystalline silicon PV-wafers N2 - The selective emitter is a well-known technology for producing highly doped areas under the metallization grid to improve the solar cell performance. In this work, the influence of laser irradiation on phosphoric acid coated multicrystalline silicon PV-wafers on the wafer surface structure, the phosphorous depth distribution and the electrical contact resistance within the laser treated area as well as the electrical series resistance of laserprocessed solar cells was evaluated. Different laser processing settings were tested including pulsed and continuous wave (cw) laser sources (515 nm, 532 nm, 1064 nm wavelength). Complementary numerical simulations using the finite element method (FEM) were conducted to explain the impact of the laser parameters on the melting behavior (melt duration and geometry). It was found that the melt duration is a key parameter for a successful laser Doping process. Our simulations at a laser wavelengths of 515 nm reveal that low-repetition rate (<500 kHz) laser pulses of 300 ns duration generate a melt duration of ~0.35 µs, whereas upon scanning cw-laser radiation at 532 nm prolongates the melt duration by at least one order of magnitude. Experimentally, the widely used ns-laser pulses did not lead to satisfying laser irradiation results. In contrast, cw-laser radiation and scan velocities of less than 2 m/s led to suitable laser doping featuring low electrical resistances in the laser treated areas. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Silicon solar cell KW - Selective emitter KW - Laser processing KW - Doping KW - Simulation PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.7 SP - 1243 EP - 1247 AN - OPUS4-24995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberstein, M. A1 - Geier, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Voelkel, L. A1 - Böhme, R. A1 - Pentzien, Simone A1 - Koter, Robert A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Towards an industrial laser doping process for the selective emitter using phosphoric acid as dopant N2 - Different laser supported approaches have already been realized, proving the great potential of laserdoped selective emitters (LDSE). However, it is challenging to establish a low-cost process by using pulsed laser tools. So far a single-step process only leads to satisfying results utilizing cw-lasers. In this paper we have examined a two-step process to produce laser-doped selective emitters on multicrystalline textured standard silicon photovoltaic wafers (90-Ω/sq-Emitter, SiN-antireflection coating (ARC)). The precise ARC removal by near-infrared fs-laser pulses (30 fs, 800 nm), and the doping of uncoated silicon wafers by ns-laser pulses (8 ns, 532 nm) were systematically investigated. In the fs-experiment, optimum conditions for ARC removal were identified. In the nsexperiments under suitable conditions (melting regime), the phosphorous concentration underneath the wafer surface was significantly increased and the sheet resistance was reduced by nearly a factor of two. Moreover, electrical measurements on fired metallization fingers deposited on the laser processed wafers showed low contact resistances. Hence, wafer conditioning with combined fs-laser- and ns-laser-processes are expected to be a promising technology for producing selective emitters. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Doping KW - Selective emitter KW - Multicrystalline silicon PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.2 SP - 1220 EP - 1223 AN - OPUS4-24996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - (LIPSS) KW - Optical properties KW - Surface plasmon polaritons KW - Semiconductors KW - Silicon PY - 2011 U6 - https://doi.org/10.1016/j.apsusc.2010.11.059 SN - 0169-4332 SN - 1873-5584 VL - 257 IS - 12 SP - 5420 EP - 5423 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg ED - Panchenko, V. ED - Mourou, G. ED - Zheltikov, A. M. T1 - Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of semiconductors and dielectrics by linearly polarized high-intensity Ti:sapphire fs-laser pulses (τ ~100 fs, λ ~800 nm) is studied experimentally and theoretically. In the experiments, two different types of LIPSS exhibiting very different spatial periods are observed (socalled LSFL – low spatial frequency LIPSS, and HSFL - high spatial frequency LIPSS), both having a different dependence on the incident laser fluence and pulse number per spot. The experimental results are analyzed by means of a new theoretical approach, which combines the generally accepted LIPSS theory of J. E. Sipe and co-workers [Phys. Rev. B 27, 1141-1154 (1983)] with a Drude model, in order to account for transient changes of the optical properties of the irradiated materials. The joint Sipe-Drude model is capable of explaining numerous aspects of fs-LIPSS formation, i.e., the orientation of the LIPSS, their fluence dependence as well as their spatial periods. The latter aspect is specifically demonstrated for silicon crystals, which show experimental LSFL periods Λ somewhat smaller than λ. This behaviour is caused by the excitation of surface plasmon polaritons, SPP, (once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material) and the subsequent interference between its electrical fields with that of the incident laser beam, resulting in a spatially modulated energy deposition at the surface. Upon multi-pulse irradiation, a feedback mechanism, caused by the redshift of the resonance in a grating-assisted SPP excitation, is further reducing the LSFL spatial periods. The SPP-based mechanism of LSFL successfully explains the remarkably large range of LSFL periods between ~0.6 λ and λ. T2 - LAT 2010 - International Conference on Lasers, Applications, and Technologies CY - Kazan, Russia DA - 23.08.2010 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface plasmon polaritons KW - Second harmonic generation (SHG) KW - Silicon KW - Semiconductors KW - Dielectrics PY - 2011 U6 - https://doi.org/10.1117/12.879813 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 7994 SP - 79940M-1 EP - 79940M-10 CY - Bellingham, USA AN - OPUS4-23291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rohloff, M. A1 - Das, S.K. A1 - Höhm, S. A1 - Grunwald, R. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of five Ti:sapphire femtosecond (fs) laser pulse pairs (150 fs, 800 nm) is studied experimentally. A Michelson interferometer is used to generate near-equal-energy double-pulse sequences with a temporal pulse delay from -20 to +20 ps between the cross-polarized individual fs-laser pulses (~0.2 ps resolution). The results of multiple double-pulse irradiation sequences are characterized by means of Scanning Electron and Scanning Force Microscopy. Specifically in the sub-ps delay domain striking differences in the surface morphologies can be observed, indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS. KW - Atomic force microscopy KW - Conduction bands KW - High-speed optical techniques KW - Laser beam effects KW - Scanning electron microscopy KW - Silicon compounds KW - Surface morphology PY - 2011 U6 - https://doi.org/10.1063/1.3605513 SN - 0021-8979 SN - 1089-7550 VL - 110 IS - 1 SP - 014910-1 - 014910-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-24049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -