TY - JOUR A1 - Kirner, Sabrina V. A1 - Hermens, U. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Florian, C. A1 - Hischen, F. A1 - Plamadeala, C. A1 - Baumgartner, W. A1 - Winands, K. A1 - Mescheder, H. A1 - Krüger, Jörg A1 - Solis, J. A1 - Siegel, J. A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel N2 - Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/ phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials. KW - Biomometics KW - Surface wetting KW - Steel KW - Bug KW - Laser-induced periodic surface structures KW - Fluid transport KW - Femtosecond laser ablation PY - 2017 DO - https://doi.org/10.1007/s00339-017-1317-3 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 12 SP - 754, 1 EP - 13 AN - OPUS4-42817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 DO - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epperlein, Nadja A1 - Menzel, Friederike A1 - Schwibbert, Karin A1 - Koter, Robert A1 - Bonse, Jörn A1 - Sameith, Janin A1 - Krüger, Jörg A1 - Toepel, Jörg T1 - Influence of femtosecond laser produced nanostructures on biofilm growth on steel N2 - Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization. KW - Laser-induced periodic surface structures KW - Femtosecond laser KW - Steel KW - Biofilms KW - Microbial adhesion tests PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433217305470 DO - https://doi.org/10.1016/j.apsusc.2017.02.174 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 420 EP - 424 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation N2 - In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach–Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation. KW - Laser-induced periodic surface structures, LIPSS KW - Laser ablation KW - Surface plasmon polariton PY - 2017 DO - https://doi.org/10.1088/1402-4896/aa5578 SN - 1402-4896 SN - 0031-8949 VL - 92 IS - 3 SP - Article 034003, 1 EP - 7 PB - IOP CY - Bristol, UK AN - OPUS4-39082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina V. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures — a scientific evergreen N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser ablation KW - Nanostructures KW - Surface functionalization KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) PY - 2017 DO - https://doi.org/10.1109/JSTQE.2016.2614183 SN - 1077-260X SN - 1558-4542 VL - 23 IS - 3 SP - 9000615 PB - IEEE AN - OPUS4-38633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -