TY - JOUR A1 - Bonse, Jörn A1 - Wrobel, J. M. A1 - Brzezinka, Klaus-Werner A1 - Esser, N. A1 - Kautek, Wolfgang T1 - Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations KW - Femtosecond laser ablation KW - Indium phosphide KW - Raman spectroscopy KW - Atomic force microscopy PY - 2002 SN - 0169-4332 SN - 1873-5584 VL - 202 SP - 272 EP - 282 PB - North-Holland CY - Amsterdam AN - OPUS4-2645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Kautek, Wolfgang A1 - Krüger, Jörg A1 - Welsch, E. T1 - Femtosecond laser damage of a high reflecting mirror N2 - Multiple pulse investigations of 130-fs Ti:sapphire laser-induced damage of a high reflecting mirror consisting of alternating ?/4-layers of Ta2O5 and SiO2 and a single 500-nm Ta2O5 film were performed. In both cases, fused silica served as the substrate. For a fixed number of 1000 laser pulses per spot, a decrease in the damage threshold fluence of the mirror by a factor of two was observed by changing the repetition rate from 10 Hz to 1 kHz. A single 500-nm Ta2O5 film shows higher damage resistance compared to the mirror. The mirror and the Ta2O5 film samples were partially coated with a 300-nm-thick aluminium layer. The aluminium coating does not influence the damage threshold of the dielectrics underneath. KW - Aluminium KW - Laser ablation KW - Optical coatings KW - Silicon oxide PY - 2002 U6 - https://doi.org/10.1016/S0040-6090(02)00074-3 SN - 0040-6090 IS - 408 SP - 297 EP - 301 PB - Elsevier CY - Amsterdam AN - OPUS4-1382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, Matthias T1 - Femtosecond laser ablation of silicon-modification thresholds and morphology N2 - We investigated the initial modification and ablation of crystalline silicon with single and multiple Ti:sapphire laser pulses of 5 to 400 fs duration. In accordance with earlier established models, we found the phenomena amorphization, melting, re-crystallization, nucleated vaporization, and ablation to occur with increasing laser fluence down to the shortest pulse durations. We noticed new morphological features (bubbles) as well as familiar ones (ripples, columns). A nearly constant ablation threshold fluence on the order of 0.2 J/cm2 for all pulse durations and multiple-pulse irradiation was observed. For a duration of ,100 fs, significant incubation can be observed, whereas for 5 fs pulses, the ablation threshold does not depend on the pulse number within the experimental error. For micromachining of silicon, a pulse duration of less than 500 fs is not advantageous. PY - 2002 U6 - https://doi.org/10.1007/s003390100893 SN - 0947-8396 VL - 74 IS - 1 SP - 19 EP - 25 PB - Springer CY - Berlin AN - OPUS4-6328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jeschke, H.O. A1 - Garcia, M.E. A1 - Lenzner, Matthias A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Laser ablation thresholds of silicon for different pulse durations: theory and experiment N2 - The ultrafast laser ablation of silicon has been investigated experimentally and theoretically. The theoretical description is based on molecular dynamics (MD) simulations combined with a microscopic electronic model. We determine the thresholds of melting and ablation for two different pulse durations =20 and 500 fs. Experiments have been performed using 100 Ti:Sap-phire laser pulses per spot in air environment. The ablation thresholds were determined for pulses with a duration of 25 and 400 fs, respectively. Good agreement is obtained between theory and experiment. KW - Laser ablation KW - Pulse duration KW - Threshold of silicon PY - 2002 U6 - https://doi.org/10.1016/S0169-4332(02)00458-0 SN - 0169-4332 SN - 1873-5584 VL - 197-198 SP - 839 EP - 844 PB - North-Holland CY - Amsterdam AN - OPUS4-6314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -