TY - CONF A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Rohloff, M. A1 - Das, S. K. A1 - Höhm, S. A1 - Rosenfeld, A. T1 - Femtosecond laser-induced periodic surface structures: importance of transient excitation stages T2 - SPIE Conference on Optics+Optoelktronics 2011, Conference "Damage to VUV, EUV and X-ray Optics (XDAM3)" CY - Prague, Czech Republic DA - 2011-04-18 PY - 2011 AN - OPUS4-23549 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Structural morphological and dynamical aspects of fs-laser induced modification of crystalline silicon T2 - Eingeladener Vortrag im Seminar des Bereichs A des Max-Born-instituts, Adlershof CY - Berlin, Germany DA - 2010-01-12 PY - 2010 AN - OPUS4-20759 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Structural and morphological modifikation of crystalline silicon induced femtosecond laser pulses T2 - internes Seminar des Fraunhofer-Instituts für Keramische Technologien und Systeme (IKTS) CY - Dresden, Germany DA - 2010-01-20 PY - 2010 AN - OPUS4-20805 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beke, S. A1 - Sugioka, K. A1 - Midorikawa, K. A1 - Bonse, Jörn T1 - Near-IR femtosecond and VUV nanosecond laser processing of TeO2 crystals in air N2 - Near-IR femtosecond ( τ = 150 fs, λ = 775 nm, repetition rate 1 kHz) and VUV nanosecond (τ = 20 ns, λ = 157 nm, repetition rate 1 to 5 Hz) laser pulse ablation of single-crystalline TeO2 (c-TeO2, grown by the balance controlled Czochalski growth method) surfaces was performed in air using the direct focusing technique. The multi-method characterization using optical microscopy, atomic force microscopy and scanning electron microscopy revealed the surface morphology of the ablated craters. This allowed us to characterize precisely the lateral and vertical dimensions of the laser-ablated craters for different laser pulse energies and pulse numbers at each spot. Based on the obtained information, we quantitatively determined the ablation threshold fluence for the fs laser irradiation when different pulse numbers were applied to the same spot by using two independent extrapolation techniques. We found that in case of NIR femtosecond laser pulse irradiation, the ablation threshold significantly depends on the number of laser pulses applied to the same spot indicating that incubation effects play an important role in this material. In case of VUV ns laser pulses, the ablation rate is significantly higher due to the high photon energy and the predominantly linear absorption in the material. These results are discussed on the basis of recent models of the interaction of laser pulses with dielectrics. PY - 2010 DO - https://doi.org/10.1117/12.845074 SN - 0277-786X SN - 0038-7355 SN - 0361-0748 VL - 7584 SP - 758415-1 - 758415-10 PB - Soc. CY - Redondo Beach, Calif. [u.a.] AN - OPUS4-20912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Maerten, L. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Transient changes of the optical properties of solids during femtosecond laser pulse irradiation and its implications for the formation of lase-induced periodic surface structures T2 - European Materials Research Society (EMRS) Spring Meeting, Symposium R "Laser processing an diagnostics for micro and nano applications" CY - Strasbourg, France DA - 2010-06-07 PY - 2010 AN - OPUS4-20993 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Boutet, S. A1 - Bogan, M. A1 - Marchesini, S. A1 - Hau-Riege, S. A1 - Stojanovic, N. A1 - Tobey, R. A1 - Ehrke, H. A1 - Cavalleri, A. A1 - Düsterer, S. A1 - Frank, M. A1 - Bajt, S. A1 - Schulz, J. A1 - Seibert, M. A1 - Hajdu, J. A1 - Treusch, R. A1 - Chapman, H. T1 - Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherant XUV-scattering T2 - The International High Power Laser Ablation Conference CY - Santa Fe, NM, USA DA - 2010-04-18 PY - 2010 AN - OPUS4-21229 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-inducted periodic surface structures: recent approaches to explain their subwavelength periodicties T2 - International Conference on Lasers, Applications, and Techonlogies, ICONO/LAT 2010, Symposium 2 der LAT 2010 "Laser-assisted Micro- and Nanotechnologies" CY - Kazan, Russia DA - 2010-08-23 PY - 2010 AN - OPUS4-21230 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Rosenfeld, A. A1 - Stoian, R. A1 - Audouard, E. T1 - Time-resolved imaging of bulk a-SiO2 upon various ultrashort excitation sequences T2 - SPIE Photonics West Conference: Frontiers in Ultrafast Optics: Biomedical, Scientific and Industrial Applications XI (Conference 7925) CY - San Francisco, CA, USA DA - 2011-01-22 PY - 2011 AN - OPUS4-22095 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Rosenfeld, A. A1 - Stoian, R. A1 - Garrelie, F. A1 - Colombier, J.-P. A1 - Stoian, R. T1 - Nanostructuring of solid surfaces basec on laser-induced periodic surface structures (LIPSS): recent experimental and theoretical approaches T2 - Poster-Session im Rahmen des deutsch-französischen Kolloquiums "French-German Research: 50 years In The Light Of The Laser" CY - Berlin, Germany DA - 2010-11-05 PY - 2010 AN - OPUS4-22324 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Femtosecond laser-induced periodic surface structures T2 - eingeladener Vortrag am Labertoire Hubert Curien Université Jean Monnet Lyon CY - Saint-Étienne, France DA - 2010-11-18 PY - 2010 AN - OPUS4-22325 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities T2 - International Conference on Lasers, Applications and Technologies, ICONO/LAT 2010 Symposium 2 Laser-assisted Micro- and Nanotechnologies, LAT 2010 CY - Kazan, Russia DA - 2010-08-23 PY - 2010 AN - OPUS4-22573 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schultz, C. A1 - Schüle, M. A1 - Stelmaszczyk, K. A1 - Bonse, Jörn A1 - Witteck, R. A1 - Weizman, M. A1 - Rhein, H. A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Stegemann, B. A1 - Fink, F. T1 - Film side laser patterning of molybdenum thin films sputter-deposited onto glass N2 - Serial interconnection of CIGSe thin film solar modules involves typically glass-side laser patterning of the molybdenum layer (P1 scribe). In this paper we present a working principle of P1 film side patterning. The investigated samples were sputter-deposited onto soda-lime glass substrates. For understanding the fundamental ablation behavior, two kinds of layer systems were studied: on the one hand monolayer systems which are compressively stressed and on the other hand bilayer systems, consisting of a tensile stressed layer on the substrate and a second layer on top. The film-side ablation process was studied using a nanosecond as well as a picosecond laser source. The influence of intrinsic stress was studied by XRD. Time resolved spectroscopy reveals the formation of plasma as important driving mechanism for ablation. It is shown that by proper adaption of the sputter conditions high-quality P1 film side patterning is achieved. T2 - 27th European photovoltaic solar energy conference and exhibition CY - Frankfurt, Germany DA - 24.09.2012 KW - Laser processing KW - Molybdenum KW - Strain KW - Ablation KW - Sputter deposition KW - Cu(InGa)Se2 PY - 2012 SN - 3-936338-28-0 DO - https://doi.org/10.4229/27thEUPVSEC2012-3CV.1.6 SP - 2266 EP - 2272 AN - OPUS4-27208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Femtosecond laser-induced periodic surface structures T2 - ULTRA Forschungseminar des Instituts für Physik der Universität Kassel CY - Kassel, Germany DA - 2012-11-12 PY - 2012 AN - OPUS4-27153 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Beke, S. A1 - Sugioka, K. A1 - Midorikawa, K. A1 - Bonse, Jörn ED - Hemsworth, E.J. T1 - Nanosecond and femtosecond laser ablation of TeO2 crystals: surface characterization and plasma analysis N2 - Near-IR femtosecond (fs) (pulse duration = 150 fs, wavelength = 775 um, Repetition rate 1 kHz) and VUV nanosecond (ns) (pulse duration = 20 ns, wavelength = 157 nm, repetition rate 1 to 5 Hz) laser pulse ablation of single-crystalline TeO? (c-Te02) surfaces was performed in air using the direct focusing technique. A multi-method characterization using optical microscopy, atomic force microscopy and scanning electron microscopy revealed the surface morphology of the ablated craters. This allowed us at each irradiation site to characterize precisely the lateral and vertical dimensions of the laser-ablated craters for different laser pulse energies and number of laser pulses per spot. Based on the obtained information, we quantitatively determined the Ablation threshold fluence for the fs laser irradiation when different pulse numbers were applied to the same spot using two independent extrapolation techniques. We found that in the case of NIR fs laser pulse irradiation, the ablation threshold significantly depends on the number of laser pulses applied to the same spot indicating that incubation effects play an important role in this material. In the case of VUV ns laser pulses, the ablation rate is significantly higher due to the high photon energy and the predominantly linear absorption in the material. These results are discussed on the basis of recent models of the interaction of laser pulses with dielectrics. In the second part of this chapter, we use timeof-flight mass spectrometry (TOFMS) to analyze the elemental composltion of the ablation products generated upon laser irradiation of c-Te02 with single fs- (pulse duration ~ 200 fs, wavelength 398 nm) and ns-pulses (pulse duration 4 ns, wavelength 355 nm). Due to the three Order of magnitude different peak intensities of the ns- and fs laser pulses, significant differences were observed regarding the laser-induced species in the plasma plume. Positive singly, doubly and triply charged Te ions (Te+, Te2+, Te3+) in the form of many different isotopes were observed in case of both irradiations. In the case of the ns-laser ablation, the TeO+ formation was negligible compared to the fs case and there was no Te trimer (Te3+) formation observed. It was found that the amplitude of Te ion Signals strongly depends on the applied laser pulse energy. Singly charged Oxygen ions (0+) are always present as a byproduct in both kinds of laser ablation. KW - Femtosecond laser ablation KW - Nanosecond laser ablation KW - Damage threshold KW - TeO2 KW - Dielectrics KW - Time-of-flight mass spectrometry (TOF-MS) PY - 2011 SN - 978-1-61324-851-5 N1 - Serientitel: Physics Research and Technology – Series title: Physics Research and Technology IS - Chapter 4 SP - 77 EP - 96 PB - Nova Science Publishers, Inc. AN - OPUS4-25465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Femtosecond laser-induced periodic surface structures T2 - Seminar im Instituto de Optica (CSIC) CY - Madrid, Spain DA - 2014-04-04 PY - 2014 AN - OPUS4-30173 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Schwibbert, Karin A1 - Richter, Anja A1 - Bonse, Jörn T1 - BioCombs4Nanofibers: From nanofibers over spiders to bacteria N2 - This 6 minute long MP4-video presents some key results of the European research project "BioCombs4Nanofibers" to the broader public. Inspired by nature, some concepts of certain types of spiders are transferred to technology in order to develop bacteria-repellent surfaces through laser surface nanostructuring. Funding notice: This study was funded by the European Union's research and innovation program under the FET Open grant agreement No. 862016 (BioCombs4Nanofibers, http://biocombs4nanofibers.eu). KW - Antiadhesive surfaces KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Bacterial adhesion tests KW - Bacteria-repellent surfaces PY - 2022 UR - https://download.jku.at/org/7kM/xyU/BioCombs4Nanofibers/D5.6_video%20for%20the%20broader%20public_23.03.2022.mp4 UR - https://www.jku.at/en/biocombs4nanofibers/dissemination/ DO - https://doi.org/10.26272/opus4-54939 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Mezera, Marek A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Krüger, Jörg A1 - Müller, F. A. A1 - Gräf, S. T1 - A brief survey on open questions about laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS) represents a simple and robust way for the nanostructuring of solids that allows creating a wide range of surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. While the currently available laser and scanner technology already allows surface processing rates at the m2/min level, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. This presentation aims to identify some unsolved scientific problems related to LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, it is intended to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Industrial applications KW - Biofilm growth PY - 2022 AN - OPUS4-54929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mirabella, Francesca A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical and structural changes at the surface of titanium materials upon irradiation with near-infrared ultrashort laser pulses N2 - Due to its large strength-to-weight ratio and excellent biocompatibility, titanium materials are of paramount importance for medical applications, e.g. as implant material for protheses. In this work, the evolution of various types of laser-induced micro- and nanostructures emerging on titanium or titanium alloys upon irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment is studied for various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz). The morphologies of the processed surfaces were systematically characterized by optical and scanning electron microscopy (OM, SEM). Complementary white-light interference microscopy (WLIM) revealed the corresponding surface topographies. Chemical and structural changes were analysed through depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray diffraction (XRD) analyses. The results point towards a remarkable influence of the laser processing parameters on the surface topography, while simultaneously altering the near-surface chemistry via laser-induced oxidation effects. Consequences for medical applications are outlined. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - ToF-SIMS KW - Chemical analysis KW - Titanium PY - 2022 AN - OPUS4-54931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Ayerdi, Jon J. A1 - Slachciak, Nadine A1 - Gradt, Thomas A1 - Krüger, Jörg A1 - Zabala, A. A1 - Spaltmann, Dirk T1 - Ultrakurzpulslaser induzierte Oxidschichten zur Reduktion von Reibung und Verschleiß auf Metalloberflächen N2 - Die Reduktion von Reibung und Verschleiß in technischen Systemen bietet ein großes Potenzial zur Reduktion von CO2-Emissionen. Dieser Beitrag diskutiert die Erzeugung und tribologische Charakterisierung von Ultrakurzpuls-generierten Nano- und Mikrostrukturen auf Metallen (Stahl, Titan). Besonderes Augenmerk wird dabei auf die Rolle der laserinduzierten Oxidschicht im Zusammenspiel mit verschleißreduzierenden Additiven in ölbasierten Schmiermitteln gerichtet. T2 - Workshop "Nachhaltigkeit durch Tribologische Schichten" - Europäische Forschungsgesellschaft Dünne Schichten e.V. CY - Karlsruhe, Germany DA - 17.05.2022 KW - Laser-induzierte periodische Oberflächenstrukturen KW - Reibungsreduktion KW - Verschleißreduktion KW - Oberflächenmodifikation KW - Oxidation KW - Additive PY - 2022 AN - OPUS4-54849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mezera, Marek A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-Induced Periodic Surface Structures: when Maxwell meets Marangoni N2 - Laser-Induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any material upon irradiation of solids with intense laser radiation. Nowadays, processing rates of up to m^2/min are enabling new industrial applications in medicine, optics, tribology, biology, etc. Depending on the specific type of LIPSS, their structural sizes typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, however, a controversial and vivid debate has emerged during the last two decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter reorganization processes, i.e. distinctly after the laser irradiation. This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. T2 - 16th International Conference on Laser Ablation (COLA 2021/22) CY - Matsue, Japan DA - 24.04.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser ablation KW - Theoretical modelling KW - Electromagnetic scattering KW - Hydrodynamics PY - 2022 AN - OPUS4-54716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Emission of X-rays during ultrashort pulse laser processing N2 - Ultrashort pulse laser materials processing can be accompanied by the production of X-rays. Small doses per laser pulse can accumulate to significant dose rates at high laser pulse repetition rates which may exceed the permitted X-ray limits for human exposure. Consequently, a proper radiation shielding must be considered in laser machining. A brief overview of the current state of the art in the field of undesired generation of X-ray radiation during ultrashort pulse laser material processing in air is presented. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Ultra-short pulse laser processing KW - Laser-induced X-ray emission KW - Radiation protection PY - 2021 SP - 1 EP - 5 AN - OPUS4-53866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-Induced Periodic Surface Structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Laser ablation KW - Microstructures KW - Nanostrcutures PY - 2021 SN - 978-3-030-63646-3 (Print) SN - 978-3-030-63647-0 (Online) DO - https://doi.org/10.1007/978-3-030-63647-0_17 SP - 879 EP - 936 PB - Springer-Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-53728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface oxidation accompanying the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - Different types of laser-generated surface structures, i.e., Laser-induced Periodic Surface Structures (LIPSS, ripples), Grooves, and Spikes are generated on titanium and Ti6Al4V surfaces by means of femtosecond (fs) laser scan processing (790 nm, 30 fs, 1 kHz) in ambient air. Morphological, chemical and structural properties of the different surface structures are characterized by various surface analytical techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Glow discharge optical emission spectroscopy (GD-OES), and depth-profiling Auger electron spectroscopy (AES). It is revealed that the formation of near-wavelength sized LIPSS is accompanied by the formation of a graded oxide extending several tens to a few hundreds of nanometers into depth. GD-OES performed on other superficial fs-laser generated structures produced at higher fluences and effective number of pulses per spot area such as periodic Grooves and irregular Spikes indicate even thicker graded oxide layers. These graded layers may be suitable for applications in prosthetics or tribology. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium alloy KW - Oxidation KW - Glow-discharge optical emission spectroscopy PY - 2021 AN - OPUS4-52749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Siegel, J. A1 - Colombier, J.-P. T1 - The role of electromagnetic scattering in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. During the last decade remarkable experimental and theoretical improvements in understanding of their formation mechanisms were obtained - all pointing toward polarization-dependent energy deposition by absorption of optical radiation that is scattered at the surface roughness and interfering with the laser beam. This contribution reviews the current state-of-the-art on the role of electromagnetic scattering in the formation of LIPSS by ultrashort laser pulses. Special attention is drawn to recent finite-difference time-domain (FDTD) calculations that allow to visualize the radiation patterns formed in the vicinity of the sample surface and to the impact of a thin superficial laser-induced oxidation layer. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Optical scattering KW - Oxidation KW - Femtosecond laser PY - 2021 AN - OPUS4-52729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mezera, Marek A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-induced periodic surface structures: When electromagnetics drives hydrodynamics N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any material upon irradiation of solids with intense laser radiation. Nowadays processing rates of up to m^2/min are enabling new industrial applications in medicine, optics, tribology, biology, etc. Depending on the specific type of LIPSS, their structural sizes typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, however, a vivid, controversial, and long-lasting debate has emerged during the last two decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter reorganization processes (distinctly after the laser irradiation). This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Matter reorganization PY - 2021 DO - https://doi.org/10.24412/cl-35039-2021-21-25-25 AN - OPUS4-53218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Surface nanotexturing by ultrashort laser pulses N2 - The presentation reviews the BAM activities in the field of surface processing by ultrashort laser pulses. A focus is laid on the generation of laser-induced periodic surface structures (LIPSS) which allow various surface functionalizations for applications in optics, tribology, liquid management, and medicine. T2 - Photonics Days Berlin Brandenburg 2022 CY - Berlin, Germany DA - 05.10.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Surface functionalization PY - 2022 AN - OPUS4-55921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-induced Periodic Surface Structures - Mechanisms, Applications, and unsolved Problems N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any type of solid upon irradiation with intense laser pulses. They represent a (quasi-)periodic modulation of the surface topography in the form of a linear grating and are typically formed in a “self-ordered” way in the focus of a laser beam. Thus, they are often accompanying laser material processing applications. The structural sizes of LIPSS typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, a controversial debate has emerged during the last decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter-reorganization processes (distinctly after the laser irradiation). From a practical point of view, however, LIPSS represent a simple and robust way for the nanostructuring of solids that allows creating a wide range of different surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. While the currently available laser and scanner technology already allows surface processing rates at the m^2/min level, industrial applications of LIPSS are sometimes limited by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas behind the LIPSS, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. Moreover, some unsolved scientific problems related to LIPSS are identified and the pending technological limitations are discussed. Hereby, it is intended to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. T2 - SPIG 2022 - 31st Summer School and International Symposium on the Physics of Ionized Gases CY - Belgrade, Serbia DA - 05.09.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Femtosecond laser processing PY - 2022 AN - OPUS4-55813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Krüger, Jörg A1 - Gräf, S. T1 - Laser-induced Periodic Surface Structures (LIPSS): Mechanisms, Applications, and unsolved Problems N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any type of solid upon irradiation with intense laser pulses. They represent a (quasi-)periodic modulation of the surface topography in the form of a linear grating and are typically formed in a “self-ordered” way in the focus of a laser beam. Thus, they are often accompanying laser material processing applications. The structural sizes of LIPSS typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, a controversial debate has emerged during the last decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter-reorganization processes (distinctly after the laser irradiation). From a practical point of view, however, LIPSS represent a simple and robust way for the nanostructuring of solids that allows creating a wide range of different surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. While the currently available laser and scanner technology already allows surface processing rates at the m^2/min level, industrial applications of LIPSS are sometimes limited by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas behind the LIPSS, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. Moreover, some unsolved scientific problems related to LIPSS are identified and the pending technological limitations are discussed. Hereby, it is intended to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry T2 - 10th International LIPSS Workshop 2022 CY - Orléans, France DA - 21.09.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Femtosecond laser processing KW - Time-resolved coherent scattering PY - 2022 AN - OPUS4-55814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures (LIPSS) - A scientific evergreen N2 - The current state in the field of laser-induced periodic surface structures (LIPSS, ripples) is reviewed. Their formation mechanisms are analyzed in ultrafast experiments (time-resolved diffraction and polarization controlled double-pulse experiments) and technological applications are demonstrated. T2 - Conference on Lasers and Electro-Optics (CLEO) - Science and Innovations 2016 CY - San Jose, CA, USA DA - 05.06.2016 KW - Laser materials processing KW - Optics at surfaces KW - Ultrafast phenomena KW - Laser-induced periodic surface strcutures (LIPSS) KW - Femtosecond laser ablation PY - 2016 SN - 978-1-943580-11-8 DO - https://doi.org/10.1364/CLEO_SI.2016.STh1Q.3 SP - STh1Q.3, 1 EP - 2 PB - Optical Society of America AN - OPUS4-37072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Koter, Robert A1 - Marschner, St. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of femtosecond LIPSS on metals T2 - 4th International workshop on laser-induced periodic surface structures CY - Dolni Brezany, Czech Republic DA - 2014-11-11 PY - 2014 AN - OPUS4-32119 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Seuthe, T. A1 - Grehn, M. A1 - Eberstein, M. T1 - Structural phenomena in multicomponent silicate glasses after femtosecond laser pulse irradiation T2 - European Materials Research Society (EMRS) Spring Meeting 2014, Symposium J "Laser interaction with advanced materials: fundamentals and applications" CY - Lille, France DA - 2014-05-26 PY - 2014 AN - OPUS4-30915 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Derrien, Thibault A1 - Krüger, Jörg A1 - Itina, T. A1 - Höhm, S. A1 - Rosenfeld, A. T1 - Plasmonic origin of near-wavelength laser-induced periodic surface structures on silicon: double-pulse experiments and theory T2 - European Materials Research Society (EMRS) Spring Meeting 2014, Symposium J "Laser interaction with advanced materials:fundamentals and applications" CY - Lille, France DA - 2014-05-26 PY - 2014 AN - OPUS4-30916 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Herzlieb, M. A1 - Krüger, Jörg T1 - Femtosecond time-resolved diffraction and two-color dynamics of laser-induced periodic surface structures on fused silica T2 - European Materials Research Society (EMRS) Spring Meeting 2014, Symposium J "Laser interaction with advanced materials:fundamentals and applications" CY - Lille, France DA - 2014-05-26 PY - 2014 AN - OPUS4-30917 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of femtosecond laser-induced periodic surface structures on metals T2 - European Materials Research Society (EMRS) Spring Meeting 2014, Symposium J "Laser interaction with advanced materials:fundamentals and applications" CY - Lille, France DA - 2014-05-26 PY - 2014 AN - OPUS4-30918 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mermillod-Blondin, A. A1 - Seuthe, T. A1 - Eberstein, M. A1 - Grehn, M. A1 - Bonse, Jörn A1 - Rosenfeld, A. ED - Gorecki, C. ED - Asundi, A. K. ED - Osten, W. T1 - Quantitative estimate of fs-laser induced refractive index changes in the bulk of various transparent materials N2 - Over the past years, many applications based on laser-induced refractive index changes in the volume of transparent materials have been demonstrated. Ultrashort pulse lasers offer the possibility to process bulky transparent materials in three dimensions, suggesting that direct laser writing will play a decisive role in the development of integrated micro-optics. At the present time, applications such as 3D long term data storage or embedded laser marking are already into the phase of industrial development. However, a quantitative estimate of the laser-induced refractive index change is still very challenging to obtain. On another hand, several microscopy techniques have been recently developed to characterize bulk refractive index changes in-situ. They have been mostly applied to biological purposes. Among those, spatial light interference microscopy (SLIM), offers a very good robustness with minimal post acquisition data processing. In this paper, we report on using SLIM to measure fs-laser induced refractive index changes in different common glassy materials, such as fused silica and borofloat glass (B33). The advantages of SLIM over classical phase-contrast microscopy are discussed. T2 - Optical Micro- and Nanometrology V CY - Brussels, Belgium DA - 14.04.2014 KW - Laser material processing KW - Quantitative phase-contrast microscopy KW - Spatial light interference microscopy KW - Nanometrology PY - 2014 DO - https://doi.org/10.1117/12.2051590 VL - 9132 SP - Artikel 91320X, 1 EP - 6 AN - OPUS4-30638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Transient changes of the optical properties of solids during fs-laser pulse irradiation and its implications for the formation of laser-induced periodic surface structures T2 - Forschungsseminar ULTRA des Fachbereichs Naturwissenschaften der Universität Kassel CY - Kassel, Germany DA - 2009-06-22 PY - 2009 AN - OPUS4-19609 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Extended Drude-Sipe theory of femtosecond laser-induced periodic surface structures on ZnO T2 - Workshop "ZnO and TiO2 nanostructures" CY - Berlin, Germany DA - 2009-07-09 PY - 2009 AN - OPUS4-19605 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures in semiconductors: recent approaches to explain their sub-wavelength periodicities T2 - Summer School 2010 des DFG Schwerpunktprogramms 1327 "Optisch erzeugte Sub-100 nm-Strukturen für biomedizinische und technische Anwendungen" CY - Hanover, Germany DA - 2010-09-20 PY - 2010 AN - OPUS4-21993 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Grehn, M. A1 - Theiss, C. A1 - Schmitt, F. J. A1 - Kaltenbach, A. A1 - Eichler, H. J. T1 - Femtosecond laser-induced ablation of dielectrics T2 - Topical Meeting "Emerging Trends and Novel Materials in Photonics" of the International Comission for Optics CY - Delphi, Greece DA - 2009-10-07 PY - 2009 AN - OPUS4-20087 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Boutet, S. A1 - Shymanovich, U. A1 - Bogan, M. A1 - Marchesini, S. A1 - Hau-Riege, S. A1 - Stojanovic, N. A1 - Bonse, Jörn A1 - Tobey, R. A1 - Ehrke, H. A1 - Cavalleri, A. A1 - Duesterer, S. A1 - Frank, M. A1 - Bajt, S. A1 - Schulz, J. A1 - Seibert, M. A1 - Hajdu, J. A1 - Treusch, R. A1 - Chapman, H. T1 - Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scattering N2 - XUV- and X-ray free-electron-lasers (FEL) combine short wavelength, ultrashort pulse duration, spatial coherence and high intensity. This unique combination of properties opens up new possibilities to study the dynamics of non-reversible phenomena with ultrafast temporal and nano- to atomic-scale spatial resolution. In this contribution we wish to present results of time-resolved experiments performed at the XUV-FEL FLASH (HASYLAB/Hamburg) aimed to investigate the nano-scale structural dynamics of laser-irradiated materials. Thin films and fabricated nano-structures, deposited on Si3N4-membranes, have been excited with ultrashort optical laser pulses. The dynamics of the non-reversible structural evolution of the irradiated samples during laser-induced melting and ablation has been studied in an optical pump - XUV-probe configuration by means of single-shot coherent scattering techniques (i.e. diffraction imaging [1]). In a first set of experiments we investigated the formation of laser induced periodic surface structures (LIPSS) on the surface of thin Si-films (thickness 100 nm). In a simplified view LIPPS are generated as a result of interference between the incident laser pulse and surface scattered waves which leads to a periodically modulated energy deposition. Time-resolved scattering using femtosecond XUV-pulses (with a wavelength of 13.5 nm and 7 nm) allowed us to directly follow LIPSS evolution on an ultrafast time-scale and with better than 40 nm spatial resolution. The observed scattering patterns show almost quantitative agreement with theoretical predictions [2] and reveal that the LIPSS start to form already during the 12 ps pump pulse. In the second set of measurements we studied picosecond and femtosecond laser induced ablation and disintegration of fabricated nano-structures. Correlations of coherent diffraction patterns measured at various time delays to the pattern of the undisturbed object show that order in the structure is progressively lost starting from short length scales. This structural rearrangement progresses at close to the speed of sound in the material. Under certain circumstances (e.g. adequate sampling) it became also possible to reconstruct real-space images of the object as it evolves over time [3]. The possibility of femtosecond single-shot imaging of ultrafast dynamic processes with nanoscale resolution provides yet more details of the physical processes involved. [1] H. N. Chapman et al. Nature Phys. 2, 839 (2006). [2] J. F. Young et al., Phys. Rev. B 27, 1155 (1983). [3] A. Barty et al. Nature Phot. 2, 415 (2008). T2 - Fall meeting of the materials research society 2009 CY - Boston, MA, USA DA - 2009-11-30 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - Time-resolved coherent XUV scattering KW - Semiconductor KW - Silicon PY - 2010 DO - https://doi.org/10.1557/PROC-1230-MM05-03 N1 - Serientitel: Materials Research Society symposium proceedings – Series title: Materials Research Society symposium proceedings VL - 1230E IS - Paper 1230-MM05-03 SP - 1 EP - 6 AN - OPUS4-21438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg ED - Panchenko, V. ED - Mourou, G. ED - Zheltikov, A. M. T1 - Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of semiconductors and dielectrics by linearly polarized high-intensity Ti:sapphire fs-laser pulses (τ ~100 fs, λ ~800 nm) is studied experimentally and theoretically. In the experiments, two different types of LIPSS exhibiting very different spatial periods are observed (socalled LSFL – low spatial frequency LIPSS, and HSFL - high spatial frequency LIPSS), both having a different dependence on the incident laser fluence and pulse number per spot. The experimental results are analyzed by means of a new theoretical approach, which combines the generally accepted LIPSS theory of J. E. Sipe and co-workers [Phys. Rev. B 27, 1141-1154 (1983)] with a Drude model, in order to account for transient changes of the optical properties of the irradiated materials. The joint Sipe-Drude model is capable of explaining numerous aspects of fs-LIPSS formation, i.e., the orientation of the LIPSS, their fluence dependence as well as their spatial periods. The latter aspect is specifically demonstrated for silicon crystals, which show experimental LSFL periods Λ somewhat smaller than λ. This behaviour is caused by the excitation of surface plasmon polaritons, SPP, (once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material) and the subsequent interference between its electrical fields with that of the incident laser beam, resulting in a spatially modulated energy deposition at the surface. Upon multi-pulse irradiation, a feedback mechanism, caused by the redshift of the resonance in a grating-assisted SPP excitation, is further reducing the LSFL spatial periods. The SPP-based mechanism of LSFL successfully explains the remarkably large range of LSFL periods between ~0.6 λ and λ. T2 - LAT 2010 - International Conference on Lasers, Applications, and Technologies CY - Kazan, Russia DA - 23.08.2010 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface plasmon polaritons KW - Second harmonic generation (SHG) KW - Silicon KW - Semiconductors KW - Dielectrics PY - 2011 DO - https://doi.org/10.1117/12.879813 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 7994 SP - 79940M-1 EP - 79940M-10 CY - Bellingham, USA AN - OPUS4-23291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, B. A1 - Richter, M. A1 - Schultz, C. A1 - Pahl, H.-U. A1 - Endert, H. A1 - Bonse, Jörn A1 - Rau, B. A1 - Quaschning, V. A1 - Fink, F. T1 - One wavelength fits all N2 - Structuring of Thin-film Solar Cells with a Single Laser Wavelength Structuring of a PV module into a number of cells is necessary to lower the current and to increase the voltage, and is typically accomplished with nanosecond laser pulses of different wavelengths. Duetothe many available laser sources, complex and expensive scribing Setups are necessary. To overcome this a concept for laser structuring of thin-film PV modules using a single wavelength allows prediction ofthe ablation behaviourfor a given laser pulse energy. KW - Thin-film solar cells KW - Nanosecond laser ablation KW - 532 nm wavelength KW - Laser scribing KW - Damage threshold PY - 2011 SN - 1869-8913 VL - 2 IS - 6 SP - 46 EP - 48 PB - Hüthig CY - Heidelberg AN - OPUS4-24158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Hertwig, Andreas A1 - Koter, Robert A1 - Weise, Matthias A1 - Beck, Uwe A1 - Reinstädt, Philipp A1 - Griepentrog, Michael A1 - Krüger, Jörg A1 - Picquart, M. A1 - Haro-Poniatowski, E. T1 - Analysis of femtosecond laser irradiation effects on amorphous hydrogenated hard carbon layers: Combining topometry, micro Raman spectroscopy and microsale mechanical indentation T2 - 11th International Conference on Laser Ablation (COLA 2011) CY - Playa del Carmen, Mexico DA - 2011-11-13 PY - 2011 AN - OPUS4-24189 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Rohloff, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures: recent experimental and theoretical approaches T2 - 11th International Conference on Laser Ablation (COLA 2011) CY - Playa del Carmen, Mexico DA - 2011-11-13 PY - 2011 AN - OPUS4-24191 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Rosenfeld, A. A1 - Bonse, Jörn A1 - Stoian, R. A1 - Audouard, E. T1 - Time-resolved imaging of bulk a-SiO2 upon various ultrashort excitation sequences N2 - Ultrashort pulses lasers are tools of choice for functionalizing the bulk of transparent materials. In particular, direct photoinscription of simple photonic functions have been demonstrated. Those elementary functions rely on the local refractive index change induced when focusing an ultrashort pulse in the volume of a transparent material. The range of possibilities offered by direct photoinscription is still under investigation. To help understanding, optimizing and assessing the full potential of this method, we developed a time-resolved phase contrast microscopy setup. The imaginary part (absorption) and the real part of the laser-induced complex refractive index can be visualized in the irradiated region. The setup is based on a commercially available phase contrast microscope extended into a pump-probe scheme. The originality of our approach is that the illumination is performed by using a pulsed laser source (i.e. a probe beam). Speckle-related issues are solved by employing adequate sets of diffusers. This laser-microscopy technique has a spatial resolution of 650 nm, and the impulse response is about 300 fs. The laser-induced refractive index changes can be tracked up to milliseconds after the energy deposition. The excitation beam (the pump) is focused with a microscope objective (numerical aperture of 0.45) into the bulk of an a-SiO2 sample. The pump beam can be temporally shaped with a SLM-based pulse shaping unit. This additional degree of flexibility allows for observing different interaction regimes. For instance, bulk material processing with femtosecond and picosecond duration pulses will be studied. T2 - Photonics West 2011 CY - San Francisco, CA, USA DA - 22.01.2011 PY - 2011 DO - https://doi.org/10.1117/12.876687 VL - 7925 IS - 79250R SP - 1 EP - 7 AN - OPUS4-23332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Rohloff, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on semiconductors and dielectrics T2 - EMRS Spring Meeting 2011, Symposium J "Laser materials processing for micro and nano applications" CY - Nice, France DA - 2011-05-09 PY - 2011 AN - OPUS4-23380 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Schillinger, H. A1 - Pahl, H.-U. A1 - Patel, R. A1 - Bovatsek, J. A1 - Desailly, R. A1 - Bulgakova, N.M. A1 - Endert, H. T1 - High Spped Laser Scribe Systems fpr Large Area Thin Film Solar Cells Manufacturing T2 - 24th European Photovoltaic Solar Energy Conference CY - Hamburg, Germany DA - 2009-09-21 PY - 2009 AN - OPUS4-20047 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Boutet, S. A1 - Shymanovich, U. A1 - Bogan, M. A1 - Marchesini, S. A1 - Hau-Riege, S. A1 - Stojanovic, N. A1 - Tobey, R. A1 - Ehrke, H. A1 - Cavalleri, A. A1 - Duesterer, S. A1 - Frank, M. A1 - Bajt, S. A1 - Schulz, J. A1 - Seibert, M. A1 - Hajdu, J. A1 - Treusch, R. A1 - Chapman, H. T1 - Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scattering T2 - 2009 Fall Meeting of the Materials Resarch Society CY - Boston, MA, USA DA - 2009-11-30 PY - 2009 AN - OPUS4-20048 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Bearbeiten und Reinigen mit Laserstrahlungen T2 - Eingeladener Vortrag in durch das Max-Born-Institut organisiertem Workshop CY - Königs Wusterhausen, Germany DA - 2009-10-05 PY - 2009 AN - OPUS4-20044 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Solis, J. A1 - Spielmann, Ch. A1 - Lippert, Th. A1 - Krüger, Jörg T1 - Damage mechanisms in thin film and bulk polymers upon NIR femtosecond pulse laser irradiation: sub-threshold processes and their implications for laser safety applications T2 - The Internation High-power Laser Ablation Conference 2010 CY - Santa Fe, NM, USA DA - 2010-04-18 PY - 2010 AN - OPUS4-20276 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -