TY - CONF A1 - Bonse, Jörn A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - X-ray emission during processing of metals with ultrashort laser pulses N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. T2 - 8th International LIPSS Workshop CY - Bochum, Germany DA - 27.09.2018 KW - X-ray KW - Laser processing KW - Ultrashort KW - Metals PY - 2018 AN - OPUS4-46104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Krüger, Jörg A1 - Kautek, Wolfgang ED - Phipps, C. T1 - Femtosecond laser micromachining of technical materials N2 - Micromachining experiments were performed with Ti:sapphire laser pulses (130 fs - 150 fs, 800 nm, approximately 10 Hz) in air. Employing the direct focusing technique, highly absorbing titanium nitride (TiN) and weakly absorbing polyimide (PI) and polymethylmethacrylate (PMMA) served as target materials. The lateral and vertical precision of the laser ablation and morphological features were characterized by scanning force (SFM), scanning electron (SEM) and optical microscopy. For TiN, incubation can be observed, i.e. the single-pulse surface damage threshold (0.26 J/cm2) is by a factor of two greater than the threshold for 100 pulses. Ablation rates below 10 nm per pulse can be achieved. The evolution of sub-wavelength ripples is presented in dependence on pulse number and laser fluence, respectively. The incubation behavior of the polymers can be described by an accumulation model as for TiN. Experiments on PI with varying focal lengths result in the same modification thresholds. Different polarization states of light (linear, circular) lead to a variation of the ablation rate and to various morphological patterns in the ablation craters (wavelength ripples, cones). Swelling of PMMA occurred at fluences below the ablation threshold. T2 - 3rd SPIE's International Conference on High-Power Laser Ablation CY - Santa Fe, NM, USA DA - 24.04.2000 KW - Ablation KW - Femtosecond pulse laser KW - Laser processing KW - Micromachining KW - Polymer KW - Titanium nitride KW - Ripples PY - 2000 SN - 0-8194-3700-X DO - https://doi.org/10.1117/12.407346 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 4065 SP - 161 EP - 172 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geier, M. A1 - Eberstein, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Völkel, L. A1 - Böhme, R. A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Impact of laser treatment on phosphoric acid coated multicrystalline silicon PV-wafers N2 - The selective emitter is a well-known technology for producing highly doped areas under the metallization grid to improve the solar cell performance. In this work, the influence of laser irradiation on phosphoric acid coated multicrystalline silicon PV-wafers on the wafer surface structure, the phosphorous depth distribution and the electrical contact resistance within the laser treated area as well as the electrical series resistance of laserprocessed solar cells was evaluated. Different laser processing settings were tested including pulsed and continuous wave (cw) laser sources (515 nm, 532 nm, 1064 nm wavelength). Complementary numerical simulations using the finite element method (FEM) were conducted to explain the impact of the laser parameters on the melting behavior (melt duration and geometry). It was found that the melt duration is a key parameter for a successful laser Doping process. Our simulations at a laser wavelengths of 515 nm reveal that low-repetition rate (<500 kHz) laser pulses of 300 ns duration generate a melt duration of ~0.35 µs, whereas upon scanning cw-laser radiation at 532 nm prolongates the melt duration by at least one order of magnitude. Experimentally, the widely used ns-laser pulses did not lead to satisfying laser irradiation results. In contrast, cw-laser radiation and scan velocities of less than 2 m/s led to suitable laser doping featuring low electrical resistances in the laser treated areas. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Silicon solar cell KW - Selective emitter KW - Laser processing KW - Doping KW - Simulation PY - 2011 SN - 3-936338-27-2 DO - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.7 SP - 1243 EP - 1247 AN - OPUS4-24995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Mann, Guido A1 - Krüger, Jörg A1 - Marcinkowski, M. A1 - Eberstein, M. T1 - Femtosecond laser-induced removal of silicon nitride layers from doped and textured silicon wafers used in photovoltaics N2 - The removal of a 75- to 90-nm-thick passivating silicon nitride antireflection coating from standard textured multicrystalline silicon photovoltaic wafers with a typical diffused 90-Ω/sq-emitter upon irradiation with near-infrared femtosecond laser pulses (790 nm central wavelength, 30 fs pulse duration) is studied experimentally. The laser irradiation areas are subsequently characterized by complementary optical microscopy, scanning electron microscopy and depth profiling chemical analyses using secondary ion mass spectrometry. The results clarify the thin-film femtosecond laser ablation scenario and outline the process windows for selective antireflection coating removal. KW - Photovoltaics KW - Solar cell KW - Laser processing KW - FS-laser ablation KW - Silicon nitride PY - 2013 DO - https://doi.org/10.1016/j.tsf.2013.07.005 SN - 0040-6090 VL - 542 SP - 420 EP - 425 PB - Elsevier CY - Amsterdam AN - OPUS4-28874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schultz, C. A1 - Schüle, M. A1 - Stelmaszczyk, K. A1 - Bonse, Jörn A1 - Witteck, R. A1 - Weizman, M. A1 - Rhein, H. A1 - Rau, B. A1 - Schlatmann, R. A1 - Quaschning, V. A1 - Stegemann, B. A1 - Fink, F. T1 - Film side laser patterning of molybdenum thin films sputter-deposited onto glass N2 - Serial interconnection of CIGSe thin film solar modules involves typically glass-side laser patterning of the molybdenum layer (P1 scribe). In this paper we present a working principle of P1 film side patterning. The investigated samples were sputter-deposited onto soda-lime glass substrates. For understanding the fundamental ablation behavior, two kinds of layer systems were studied: on the one hand monolayer systems which are compressively stressed and on the other hand bilayer systems, consisting of a tensile stressed layer on the substrate and a second layer on top. The film-side ablation process was studied using a nanosecond as well as a picosecond laser source. The influence of intrinsic stress was studied by XRD. Time resolved spectroscopy reveals the formation of plasma as important driving mechanism for ablation. It is shown that by proper adaption of the sputter conditions high-quality P1 film side patterning is achieved. T2 - 27th European photovoltaic solar energy conference and exhibition CY - Frankfurt, Germany DA - 24.09.2012 KW - Laser processing KW - Molybdenum KW - Strain KW - Ablation KW - Sputter deposition KW - Cu(InGa)Se2 PY - 2012 SN - 3-936338-28-0 DO - https://doi.org/10.4229/27thEUPVSEC2012-3CV.1.6 SP - 2266 EP - 2272 AN - OPUS4-27208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberstein, M. A1 - Geier, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Voelkel, L. A1 - Böhme, R. A1 - Pentzien, Simone A1 - Koter, Robert A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Towards an industrial laser doping process for the selective emitter using phosphoric acid as dopant N2 - Different laser supported approaches have already been realized, proving the great potential of laserdoped selective emitters (LDSE). However, it is challenging to establish a low-cost process by using pulsed laser tools. So far a single-step process only leads to satisfying results utilizing cw-lasers. In this paper we have examined a two-step process to produce laser-doped selective emitters on multicrystalline textured standard silicon photovoltaic wafers (90-Ω/sq-Emitter, SiN-antireflection coating (ARC)). The precise ARC removal by near-infrared fs-laser pulses (30 fs, 800 nm), and the doping of uncoated silicon wafers by ns-laser pulses (8 ns, 532 nm) were systematically investigated. In the fs-experiment, optimum conditions for ARC removal were identified. In the nsexperiments under suitable conditions (melting regime), the phosphorous concentration underneath the wafer surface was significantly increased and the sheet resistance was reduced by nearly a factor of two. Moreover, electrical measurements on fired metallization fingers deposited on the laser processed wafers showed low contact resistances. Hence, wafer conditioning with combined fs-laser- and ns-laser-processes are expected to be a promising technology for producing selective emitters. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Doping KW - Selective emitter KW - Multicrystalline silicon PY - 2011 SN - 3-936338-27-2 DO - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.2 SP - 1220 EP - 1223 AN - OPUS4-24996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Lasagni, A. F. T1 - Editorial: Laser micro- and nano-material processing – Part 1 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Laser processing KW - Microstructures KW - Nanostructures KW - Applications PY - 2020 DO - https://doi.org/10.1515/aot-2020-0009 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 1-2 SP - 7 EP - 9 PB - De Gruyter CY - Berlin AN - OPUS4-50797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Höhm, S. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Applications of laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - SPIE Photonics West Conference, Laser-based Micro- and Nanoprocessing XI CY - San Francisco, USA DA - 27.01.2017 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Application PY - 2017 SN - 978-1-5106-0625-8 SN - 978-1-5106-0626-5 DO - https://doi.org/10.1117/12.2250919 SN - 0277-786X SN - 1996-756X VL - 10092 SP - Article UNSP 100920N, 100920N-1 EP - 100920N-9 PB - SPIE CY - Bellingham, USA AN - OPUS4-39305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Hermens, U. A1 - Kirner, Sabrina V. A1 - Emonts, C. A1 - Comanns, P. A1 - Skoulas, E. A1 - Mimidis, A. A1 - Mescheder, H. A1 - Winands, K. A1 - Krüger, Jörg A1 - Stratakis, E. T1 - Mimicking lizard-like surface structures and their fluid transport upon ultrashort laser pulse irradiation of steel N2 - The wetting behavior of material surfaces can be controlled by surface structures. We functionalized case-hardened alloyed carbon steel to modify the wetting behavior using ultrashort laser pulses (fs- to ps-range). The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. An experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) rendered an assignment of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, micro cones, etc.) possible. Analyzing the surface using optical as well as scanning electron microscopy allowed the identification of morphologies providing the optimum similarity to the natural skin of non-moisture havesting lizards. For mimicking skin structures of moisture-harvesting lizards, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally revealed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting and directional fluid transport properties. The results suggest possible applications of the laser-structured surfaces. T2 - European Materials Research Society (EMRS) Spring Meeting 2017, Symposium K “Bioinspired and biointegrated materials as new frontiers nanomaterials VII” CY - Strasbourg, France DA - 22.05.2017 KW - Lizards KW - Laser processing KW - Steel KW - Fluid transport KW - Wetting PY - 2017 AN - OPUS4-40421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mezera, Marek A1 - Florian, C. A1 - Römer, G.-W. A1 - Krüger, Jörg A1 - Bonse, Jörn ED - Stoian, R. ED - Bonse, Jörn T1 - Creation of Material Functions by Nanostructuring N2 - Surface nanostructures provide the possibility to create and tailor surface functionalities mainly via controlling their topography along with other chemical and physical material properties. One of the most appealing technologies for surface functionalization via micro- and nanostructuring is based on laser processing. This can be done either via direct contour-shaping of the irradiated material using a tightly focused laser beam or in a self-ordered way that allows employing larger laser beam diameters along with areal scanning to create a variety of laser-induced periodic surface structures (LIPSS). For the latter approach, particularly ultrashort pulsed lasers have recently pushed the borders across long-lasting limitations regarding the minimum achievable feature sizes and additionally boosted up the production times. This chapter reviews the plethora of recently investigated applications of LIPSS—for example, via imposing diffractive or plasmonic structural colors, the management of liquids and surface wetting properties, biomedical and bioinspired functionalities, beneficial effects in tribology for reducing friction and wear, the manipulation of optical scattering and absorption in photovoltaics, or the modification of magnetic or superconducting surface properties in other energy applications. The footprint of the LIPSS-based technology is explored in detail regarding the current state of industrialization, including an analysis of the market and associated LIPSS production costs. KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Nanostructures KW - Microstructures KW - Laser processing PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_23 VL - 239 SP - 827 EP - 886 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Richter, Anja M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-Textured Surfaces: A Way to Control Biofilm Formation? N2 - Bacterial biofilms pose serious problems in medical and industrial settings. One of the major societal challenges lies in the increasing resistance of bacteria against biocides used in antimicrobial treatments, e.g., via overabundant use in medicine, industry, and agriculture or cleaning and disinfection in private households. Hence, new efficient bacteria-repellent strategies avoiding the use of biocides are strongly desired. One promising route to achieve bacteria-repellent surfaces lies in the contactless and aseptic large-area laser-processing of technical surfaces. Tailored surface textures, enabled by different laser-processing strategies that result in topographic scales ranging from nanometers to micrometers may provide a solution to this challenge. This article presents a current state-of-the-art review of laser-surface subtractive texturing approaches for controlling the biofilm formation for different bacterial strains and in different environments. Based on specific properties of bacteria and laser-processed surfaces, the challenges of anti-microbial surface designs are discussed, and future directions will be outlined. KW - Antibacterial surfaces KW - Biofilms KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microbial adhesions PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588260 DO - https://doi.org/10.1002/lpor.202300753 SN - 1863-8899 SP - 1 EP - 41 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence N2 - Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different submicrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Polyethylene terephthalate KW - Biofilm formation KW - Cell appendages KW - Biomimetic KW - F pili PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537431 DO - https://doi.org/10.3390/nano11113000 VL - 11 IS - 11 SP - 3000 PB - MDPI AN - OPUS4-53743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Structuring of thin films by ultrashort laser pulses N2 - Modern life and global communication would not be possible without technologically tailored thin films; they are omnipresent in daily life applications. In most cases, the films are deposited entirely at the carrying substrates in a specific processing step of the device or sample. In some cases, however, removal or modification must be performed locally, i.e., site-controlled and material selective through an additional laser processing step. For that ultrashort laser pulses with durations in the femtosecond and picosecond range can provide unique advantages and capabilities in industrially scalable schemes. This article reviews the current state of the research and corresponding industrial transfer related to the structuring of thin films by ultrashort pulsed lasers. It focuses on the pertinent historic developments, reveals the relevant physical and chemical effects, explores the ultimate limits, and discusses selected industrial and scientific applications. KW - Thin films KW - Laser processing KW - Ultrashort lasers KW - Laser damage KW - Femtosecond laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565732 DO - https://doi.org/10.1007/s00339-022-06229-x SN - 0947-8396 SN - 1432-0630 VL - 129 IS - 1 SP - 1 EP - 38 PB - Springer CY - Berlin AN - OPUS4-56573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -