TY - JOUR A1 - Beke, S. A1 - Sugioka, K. A1 - Midorikawa, K. A1 - Péter, Á. A1 - Nánai, L. A1 - Bonse, Jörn T1 - Characterization of the ablation of TeO2 crystals in air with femtosecond laser pulses N2 - Femtosecond (fs) laser pulse ablation (pulse duration of 150 fs, wavelength of 775 nm, repetition rate of 1 kHz) of single-crystalline TeO2 surfaces was performed in air using the direct focusing technique. The lateral and vertical dimensions of laser ablated craters as well as the laser damage thresholds were evaluated for different pulse numbers applied to the same spot. The joint observation using optical microscopy, atomic force microscopy and scanning electron microscopy revealed the surface morphology of the ablated craters and also showed that the ablation threshold depends significantly on the number of laser pulses applied to the same spot due to incubation effects. The incubation effects change the absorption processes involved in fs-laser ablation of the transparent material from multiphoton absorption to a single-photon absorption. These results are discussed on the basis of recent models of the interaction of fs-laser pulses with dielectrics. KW - Femtosecond laser ablation KW - Damage threshold KW - TeO2 KW - Dielectrics PY - 2010 U6 - https://doi.org/10.1088/0022-3727/43/2/025401 SN - 0022-3727 SN - 1361-6463 VL - 43 IS - 2 SP - 025401-1 - 025401-6 PB - IOP Publ. CY - Bristol AN - OPUS4-20665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Puerto, D. A1 - Siegel, J. A1 - Gawelda, W. A1 - Galvan-Sosa, M. A1 - Ehrentraut, L. A1 - Bonse, Jörn A1 - Solis, J. T1 - Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics N2 - We have studied plasma formation and relaxation dynamics along with the corresponding topography modifications in fused silica and sapphire induced by single femtosecond laser pulses (800 nm and 120 fs). These materials, representative of high bandgap amorphous and crystalline dielectrics, respectively, require nonlinear mechanisms to absorb the laser light. The study employed a femtosecond time-resolved microscopy technique that allows obtaining reflectivity and transmission images of the material surface at well-defined temporal delays after the arrival of the pump pulse which excites the dielectric material. The transient evolution of the free-electron plasma formed can be followed by combining the time-resolved optical data with a Drude model to estimate transient electron densities and skin depths. The temporal evolution of the optical properties is very similar in both materials within the first few hundred picoseconds, including the formation of a high reflectivity ring at about 7 ps. In contrast, at longer delays (100 ps–20 ns) the behavior of both materials differs significantly, revealing a longer lasting ablation process in sapphire. Moreover, transient images of sapphire show a concentric ring pattern surrounding the ablation crater, which is not observed in fused silica. We attribute this phenomenon to optical diffraction at a transient elevation of the ejected molten material at the crater border. On the other hand, the final topography of the ablation crater is radically different for each material. While in fused silica a relatively smooth crater with two distinct regimes is observed, sapphire shows much steeper crater walls, surrounded by a weak depression along with cracks in the material surface. These differences are explained in terms of the most relevant thermal and mechanical properties of the material. Despite these differences the maximum crater depth is comparable in both material at the highest fluences used (16J/cm2). The evolution of the crater depth as a function of fluence can be described taking into account the individual bandgap of each material. KW - Femtosecond laser ablation KW - Plasma formation KW - Time-resolved microscopy KW - Dielectrics KW - Fused silica KW - Sapphire KW - Scanning force microscopy KW - Reflectivity measurements KW - Transmission measurements KW - Drude model PY - 2010 U6 - https://doi.org/10.1364/JOSAB.27.001065 SN - 0740-3224 SN - 1520-8540 VL - 27 IS - 5 SP - 1065 EP - 1076 PB - Optical Society of America CY - Washington, DC AN - OPUS4-21167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -