TY - CONF A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Boutet, S. A1 - Shymanovich, U. A1 - Bogan, M. A1 - Marchesini, S. A1 - Hau-Riege, S. A1 - Stojanovic, N. A1 - Bonse, Jörn A1 - Tobey, R. A1 - Ehrke, H. A1 - Cavalleri, A. A1 - Duesterer, S. A1 - Frank, M. A1 - Bajt, S. A1 - Schulz, J. A1 - Seibert, M. A1 - Hajdu, J. A1 - Treusch, R. A1 - Chapman, H. T1 - Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scattering N2 - XUV- and X-ray free-electron-lasers (FEL) combine short wavelength, ultrashort pulse duration, spatial coherence and high intensity. This unique combination of properties opens up new possibilities to study the dynamics of non-reversible phenomena with ultrafast temporal and nano- to atomic-scale spatial resolution. In this contribution we wish to present results of time-resolved experiments performed at the XUV-FEL FLASH (HASYLAB/Hamburg) aimed to investigate the nano-scale structural dynamics of laser-irradiated materials. Thin films and fabricated nano-structures, deposited on Si3N4-membranes, have been excited with ultrashort optical laser pulses. The dynamics of the non-reversible structural evolution of the irradiated samples during laser-induced melting and ablation has been studied in an optical pump - XUV-probe configuration by means of single-shot coherent scattering techniques (i.e. diffraction imaging [1]). In a first set of experiments we investigated the formation of laser induced periodic surface structures (LIPSS) on the surface of thin Si-films (thickness 100 nm). In a simplified view LIPPS are generated as a result of interference between the incident laser pulse and surface scattered waves which leads to a periodically modulated energy deposition. Time-resolved scattering using femtosecond XUV-pulses (with a wavelength of 13.5 nm and 7 nm) allowed us to directly follow LIPSS evolution on an ultrafast time-scale and with better than 40 nm spatial resolution. The observed scattering patterns show almost quantitative agreement with theoretical predictions [2] and reveal that the LIPSS start to form already during the 12 ps pump pulse. In the second set of measurements we studied picosecond and femtosecond laser induced ablation and disintegration of fabricated nano-structures. Correlations of coherent diffraction patterns measured at various time delays to the pattern of the undisturbed object show that order in the structure is progressively lost starting from short length scales. This structural rearrangement progresses at close to the speed of sound in the material. Under certain circumstances (e.g. adequate sampling) it became also possible to reconstruct real-space images of the object as it evolves over time [3]. The possibility of femtosecond single-shot imaging of ultrafast dynamic processes with nanoscale resolution provides yet more details of the physical processes involved. [1] H. N. Chapman et al. Nature Phys. 2, 839 (2006). [2] J. F. Young et al., Phys. Rev. B 27, 1155 (1983). [3] A. Barty et al. Nature Phot. 2, 415 (2008). T2 - Fall meeting of the materials research society 2009 CY - Boston, MA, USA DA - 2009-11-30 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - Time-resolved coherent XUV scattering KW - Semiconductor KW - Silicon PY - 2010 U6 - https://doi.org/10.1557/PROC-1230-MM05-03 N1 - Serientitel: Materials Research Society symposium proceedings – Series title: Materials Research Society symposium proceedings VL - 1230E IS - Paper 1230-MM05-03 SP - 1 EP - 6 AN - OPUS4-21438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg ED - Panchenko, V. ED - Mourou, G. ED - Zheltikov, A. M. T1 - Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of semiconductors and dielectrics by linearly polarized high-intensity Ti:sapphire fs-laser pulses (τ ~100 fs, λ ~800 nm) is studied experimentally and theoretically. In the experiments, two different types of LIPSS exhibiting very different spatial periods are observed (socalled LSFL – low spatial frequency LIPSS, and HSFL - high spatial frequency LIPSS), both having a different dependence on the incident laser fluence and pulse number per spot. The experimental results are analyzed by means of a new theoretical approach, which combines the generally accepted LIPSS theory of J. E. Sipe and co-workers [Phys. Rev. B 27, 1141-1154 (1983)] with a Drude model, in order to account for transient changes of the optical properties of the irradiated materials. The joint Sipe-Drude model is capable of explaining numerous aspects of fs-LIPSS formation, i.e., the orientation of the LIPSS, their fluence dependence as well as their spatial periods. The latter aspect is specifically demonstrated for silicon crystals, which show experimental LSFL periods Λ somewhat smaller than λ. This behaviour is caused by the excitation of surface plasmon polaritons, SPP, (once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material) and the subsequent interference between its electrical fields with that of the incident laser beam, resulting in a spatially modulated energy deposition at the surface. Upon multi-pulse irradiation, a feedback mechanism, caused by the redshift of the resonance in a grating-assisted SPP excitation, is further reducing the LSFL spatial periods. The SPP-based mechanism of LSFL successfully explains the remarkably large range of LSFL periods between ~0.6 λ and λ. T2 - LAT 2010 - International Conference on Lasers, Applications, and Technologies CY - Kazan, Russia DA - 23.08.2010 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface plasmon polaritons KW - Second harmonic generation (SHG) KW - Silicon KW - Semiconductors KW - Dielectrics PY - 2011 U6 - https://doi.org/10.1117/12.879813 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 7994 SP - 79940M-1 EP - 79940M-10 CY - Bellingham, USA AN - OPUS4-23291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -