TY - CONF A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Boutet, S. A1 - Shymanovich, U. A1 - Bogan, M. A1 - Marchesini, S. A1 - Hau-Riege, S. A1 - Stojanovic, N. A1 - Bonse, Jörn A1 - Tobey, R. A1 - Ehrke, H. A1 - Cavalleri, A. A1 - Duesterer, S. A1 - Frank, M. A1 - Bajt, S. A1 - Schulz, J. A1 - Seibert, M. A1 - Hajdu, J. A1 - Treusch, R. A1 - Chapman, H. T1 - Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scattering T2 - Fall meeting of the materials research society 2009 - Symposium MM / Materials research society symposium proceedings N2 - XUV- and X-ray free-electron-lasers (FEL) combine short wavelength, ultrashort pulse duration, spatial coherence and high intensity. This unique combination of properties opens up new possibilities to study the dynamics of non-reversible phenomena with ultrafast temporal and nano- to atomic-scale spatial resolution. In this contribution we wish to present results of time-resolved experiments performed at the XUV-FEL FLASH (HASYLAB/Hamburg) aimed to investigate the nano-scale structural dynamics of laser-irradiated materials. Thin films and fabricated nano-structures, deposited on Si3N4-membranes, have been excited with ultrashort optical laser pulses. The dynamics of the non-reversible structural evolution of the irradiated samples during laser-induced melting and ablation has been studied in an optical pump - XUV-probe configuration by means of single-shot coherent scattering techniques (i.e. diffraction imaging [1]). In a first set of experiments we investigated the formation of laser induced periodic surface structures (LIPSS) on the surface of thin Si-films (thickness 100 nm). In a simplified view LIPPS are generated as a result of interference between the incident laser pulse and surface scattered waves which leads to a periodically modulated energy deposition. Time-resolved scattering using femtosecond XUV-pulses (with a wavelength of 13.5 nm and 7 nm) allowed us to directly follow LIPSS evolution on an ultrafast time-scale and with better than 40 nm spatial resolution. The observed scattering patterns show almost quantitative agreement with theoretical predictions [2] and reveal that the LIPSS start to form already during the 12 ps pump pulse. In the second set of measurements we studied picosecond and femtosecond laser induced ablation and disintegration of fabricated nano-structures. Correlations of coherent diffraction patterns measured at various time delays to the pattern of the undisturbed object show that order in the structure is progressively lost starting from short length scales. This structural rearrangement progresses at close to the speed of sound in the material. Under certain circumstances (e.g. adequate sampling) it became also possible to reconstruct real-space images of the object as it evolves over time [3]. The possibility of femtosecond single-shot imaging of ultrafast dynamic processes with nanoscale resolution provides yet more details of the physical processes involved. [1] H. N. Chapman et al. Nature Phys. 2, 839 (2006). [2] J. F. Young et al., Phys. Rev. B 27, 1155 (1983). [3] A. Barty et al. Nature Phot. 2, 415 (2008). T2 - Fall meeting of the materials research society 2009 CY - Boston, MA, USA DA - 2009-11-30 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - Time-resolved coherent XUV scattering KW - Semiconductor KW - Silicon PY - 2010 DO - https://doi.org/10.1557/PROC-1230-MM05-03 N1 - Serientitel: Materials Research Society symposium proceedings – Series title: Materials Research Society symposium proceedings VL - 1230E IS - Paper 1230-MM05-03 SP - 1 EP - 6 AN - OPUS4-21438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures JF - Applied surface science N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - (LIPSS) KW - Optical properties KW - Surface plasmon polaritons KW - Semiconductors KW - Silicon PY - 2011 DO - https://doi.org/10.1016/j.apsusc.2010.11.059 SN - 0169-4332 SN - 1873-5584 VL - 257 IS - 12 SP - 5420 EP - 5423 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsibidis, G. D. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Stratakis, E. T1 - Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams JF - Applied Physics A N2 - We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications. KW - Laser-induced periodic surface structures KW - Femtosecond laser ablation KW - Steel PY - 2018 UR - https://link.springer.com/article/10.1007/s00339-017-1443-y DO - https://doi.org/10.1007/s00339-017-1443-y SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 27, 1 EP - 13 PB - Springer-Verlag AN - OPUS4-43626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hermens, U. A1 - Kirner, Sabrina A1 - Emonts, C. A1 - Comanns, P. A1 - Skoulas, E. A1 - Mimidis, A. A1 - Mescheder, H. A1 - Winands, K. A1 - Krüger, Jörg A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials JF - Applied Surface Science N2 - Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface’s wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - Lizard KW - Surface wetting KW - Fluid transport KW - Steel PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216328306 DO - https://doi.org/10.1016/j.apsusc.2016.12.112 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 499 EP - 507 PB - Elsevier, North-Holland CY - Amsterdam AN - OPUS4-40509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epperlein, Nadja A1 - Menzel, Friederike A1 - Schwibbert, Karin A1 - Koter, Robert A1 - Bonse, Jörn A1 - Sameith, Janin A1 - Krüger, Jörg A1 - Toepel, Jörg T1 - Influence of femtosecond laser produced nanostructures on biofilm growth on steel JF - Applied Surface Science N2 - Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization. KW - Laser-induced periodic surface structures KW - Femtosecond laser KW - Steel KW - Biofilms KW - Microbial adhesion tests PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433217305470 DO - https://doi.org/10.1016/j.apsusc.2017.02.174 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 420 EP - 424 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Höhm, S. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Applications of laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - SPIE Photonics West Conference, Symposium "Laser-Based Micro- and Nanoprocessing XI" CY - San Francisco, USA DA - 28.01.2017 KW - Laser-induced periodic surface structures KW - Surface functionalization KW - Femtosecond laser PY - 2017 AN - OPUS4-39216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Hermens, U. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Florian, C. A1 - Hischen, F. A1 - Plamadeala, C. A1 - Baumgartner, W. A1 - Winands, K. A1 - Mescheder, H. A1 - Krüger, Jörg A1 - Solis, J. A1 - Siegel, J. A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel JF - Applied Physics A N2 - Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/ phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials. KW - Biomometics KW - Surface wetting KW - Steel KW - Bug KW - Laser-induced periodic surface structures KW - Fluid transport KW - Femtosecond laser ablation PY - 2017 DO - https://doi.org/10.1007/s00339-017-1317-3 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 12 SP - 754, 1 EP - 13 AN - OPUS4-42817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -