TY - JOUR A1 - Wolff, M. A1 - Wonneberger, R. A1 - Freiberg, K.E. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Giebeler, L. A1 - Koitzsch, A. A1 - Kunz, C. A1 - Weber, H. A1 - Hufenbach, J.K. A1 - Müller, F.A. A1 - Gräf, S. T1 - Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition JF - Surfaces and Interfaces N2 - Bulk metallic glasses (BMG) are amorphous metal alloys known for their unique physical and mechanical properties. In the present study, the formation of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on the Zr-based BMGs Zr46Cu46Al8, Zr61Cu25Al12Ti2, Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) and Zr57Cu15.4Al10Ni12.6Nb5 (Vit106) was investigated as a function of their different chemical composition. For this purpose, LIPSS were generated on the sample surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz). The surface topography was characterized by scanning electron microscopy and atomic force microscopy. Moreover, the impact of LIPSS formation on the structure and chemical surface composition was analyzed before and after fs-laser irradiation by X-ray diffraction and X-ray photoelectron spectroscopy as well as by transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Despite the different chemical composition of the investigated BMGs, the fs-laser irradiation resulted in almost similar properties of the generated LIPSS patterns. In the case of Zr61Cu25Al12Ti2, Vit105 and Vit106, the surface analysis revealed the preservation of the amorphous state of the materials during fs-laser irradiation. The study demonstrated the presence of a native oxide layer on all pristine BMGs. In addition, fs-laser irradiation results in the formation of laser-induced oxide layers of larger thickness consisting of an amorphous ZrAlCu-oxide. The precise laser-structuring of BMG surfaces on the nanoscale provides a versatile alternative to thermoplastic forming of BMG surfaces and is of particular interest for the engineering of functional material surfaces. KW - Bulk metallic glasses KW - Femtosecond laser KW - Laser-induced periodic surface structures (LIPSS) KW - Chemical analysis KW - Oxidation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581799 DO - https://doi.org/10.1016/j.surfin.2023.103305 SN - 2468-0230 VL - 42 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-58179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Richter, Anja M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-Textured Surfaces: A Way to Control Biofilm Formation? JF - Laser & Photonics Reviews N2 - Bacterial biofilms pose serious problems in medical and industrial settings. One of the major societal challenges lies in the increasing resistance of bacteria against biocides used in antimicrobial treatments, e.g., via overabundant use in medicine, industry, and agriculture or cleaning and disinfection in private households. Hence, new efficient bacteria-repellent strategies avoiding the use of biocides are strongly desired. One promising route to achieve bacteria-repellent surfaces lies in the contactless and aseptic large-area laser-processing of technical surfaces. Tailored surface textures, enabled by different laser-processing strategies that result in topographic scales ranging from nanometers to micrometers may provide a solution to this challenge. This article presents a current state-of-the-art review of laser-surface subtractive texturing approaches for controlling the biofilm formation for different bacterial strains and in different environments. Based on specific properties of bacteria and laser-processed surfaces, the challenges of anti-microbial surface designs are discussed, and future directions will be outlined. KW - Antibacterial surfaces KW - Biofilms KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microbial adhesions PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588260 DO - https://doi.org/10.1002/lpor.202300753 SN - 1863-8899 SP - 1 EP - 41 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costache, F. A1 - Valette, S. A1 - Bonse, Jörn T1 - Editorial: Special Issue “Dynamics and Processes at Laser-Irradiated Surfaces—A Themed Issue in Honor of the 70th Birthday of Professor Jürgen Reif” JF - Nanometerials N2 - The Special Issue “Dynamics and Processes at Laser-irradiated Surfaces” is dedicated to the 70th birthday of Jürgen Reif, retired full professor, former Chair of Experimental Physics II of the Faculty of Physics of the Brandenburg University of Technology Cottbus—Senftenberg in Germany. KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Femtosecond laser PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569482 DO - https://doi.org/10.3390/nano13030611 SN - 2079-4991 VL - 13 IS - 3 SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-56948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porta-Velilla, L. A1 - Martínez, E. A1 - Frechilla, A. A1 - Castro, M. A1 - de la Fuente, G. F. A1 - Bonse, Jörn A1 - Angurel, L. A. T1 - Grain orientation, angle of incidence, and beam polarization effects on ultraviolet 300 ps-laser-induced nanostructures on 316L stainless steel JF - Laser & Photonics Reviews N2 - Laser-induced periodic surface structures (LIPSS) represent a unique route for functionalizing materials through the fabrication of surface nanostructures. Commercial AISI 316L stainless steel (SS316L) surfaces are laser treated by ultraviolet 300 ps laser pulses in a laser line scanning (LLS) approach. Processing parameters are optimized (pulse energy of 2.08 µJ, pulse repetition frequency of 300 kHz, and suitable laser scan and sample displacement rates) for the generation of low spatial frequency LIPSS over a large 25 × 25 mm2 area. Different angles of incidence of the laser radiation (0°, 30°, and 45°) and different linear laser beam polarizations (s and p) produce a plethora of rippled surface morphologies at distinct grains. Scanning electron microscopy and 2D Fourier transforms, together with calculations of the optical energy deposited at the treated surfaces using Sipe's first-principles electromagnetic scattering theory, are used to study and analyze in detail these surface morphologies. Combined with electron backscattering diffraction, analyses allow associating site-selectively various laser-induced-surface morphologies with the underlying crystalline grain orientation. Resulting grain orientation maps reveal a strong impact of the grain crystallographic orientation on LIPSS formation and point toward possible strategies, like multi-step processes, for improving the manufacturing of LIPSS and their areal coverage of polycrystalline technical materials. KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Grain orientation KW - Electron backscattering diffraction (EBSD) KW - Laser processing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588929 DO - https://doi.org/10.1002/lpor.202300589 SN - 1863-8899 SP - 1 EP - 21 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -