TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Wirth, Thomas A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Chemical effects in the formation of fs-laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS, ripples) on metals and semiconductors in ambient air is usually accompanied by superficial oxidation effects - widely neglected in the current literature. In this contribution, chemical, structural, and mechanical alterations in the formation of femtosecond LIPSS are characterized by a variety of surface analytical techniques, including energy dispersive X-ray analyses (EDX), X-ray photoelectron spectroscopy (XPS), micro Raman spectroscopy (µ-RS), and depth-profiling Auger electron microscopy (AEM). Alternative routes of electrochemical and thermal oxidation allow to qualify the relevance of superficial oxidation effects on the tribological performance in oil lubricated reciprocating sliding tribological tests (RSTT). It is revealed that the fs-laser processing of near-wavelength sized LIPSS on metals leads to the formation of a few hundreds of nanometer thick graded oxide layer, consisting mainly of amorphous oxides. Regardless of its reduced hardness and limited thickness, this nanostructured surface layer can effciently prevent a direct metal-metal contact in the RSTT and may also act as an anchor layer for specific wear-reducing additives contained in the engine oil involved T2 - 8th International LIPSS Workshop CY - Bochum, Germany DA - 27.09.2018 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond KW - Oxidation KW - Tribology PY - 2018 AN - OPUS4-46106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface functionalization by laser-induced periodic surface structures (LIPSS) N2 - In this contribution the mechanisms of formation and current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - 10th Stuttgart Laser Technology Forum 2018 CY - Stuttgart, Germany DA - 05.06.2018 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Surface functionalization KW - Wetting KW - Tribology KW - Biofilms PY - 2018 SP - 35 AN - OPUS4-45128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -