TY - CONF A1 - Andree, Stefan A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Bonse, Jörn A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser pulses for photovoltaic bottom-up strategies N2 - A promising technology in photovoltaics is based on micro-concentrator solar cells, where the photovoltaic active area is realized as an array of sub-millimeter sized cells onto which the incident light is focused via microlenses. This approach allows to increase the cell efficiency and to realize much more compact modules compared to macroscopic concentrator devices. At the same time, expensive raw materials can be saved, which is of interest, for example, with respect to indium in the case of copper-indium-gallium-diselenide (CIGSe) thin film solar cells. Two methods to produce micro-sized precursors of CIGSe absorbers on molybdenum are presented using 30-fs laser pulses at 790 nm wavelength. On the one hand, a multi pulse surface structuring of the molybdenum film or the underlying glass substrate and a subsequent physical vapor deposition were used for a site-selective aggregation of indium droplets. On the other hand, a single pulse laser-induced forward transfer was utilized to selectively deposit combined copper-indium precursor pixels on the molybdenum back contact of the solar cell. Post-processing (selenization, isolation, contacting) of the laser-generated micro-sized precursors results in functional CIGSe solar cells. T2 - 10. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 16.11.2017 KW - Copper indium gallium diselenide (CIGSe) KW - Micro solar cell KW - Femtosecond laser KW - Laser ablation KW - Laser-induced forward transfer (LIFT) PY - 2017 SN - 1437-7624 VL - 2 SP - 1 EP - 4 PB - Hochschule Mittweida CY - Mittweida AN - OPUS4-42988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andree, Stefan A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Bonse, Jörn A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Production of precursors for micro-concentrator solar cells by femtosecond laser-induced forward transfer N2 - Single-pulse femtosecond laser-induced forward transfer (LIFT, 30 fs, 790 nm) is used to deposit micron-sized dots of copper and/or indium onto a molybdenum layer on glass. Such systems can serve as precursors for the bottom-up manufacturing of micro-concentrator solar cells based on copper-indium-gallium-diselenide. The influence of the thickness of the copper, indium and combined copper-indium donor layers on the quality of the transferred dots was qualified by scanning electron microscopy, energy-dispersive X-ray analysis, and optical microscopy. The potential for manufacturing of a spatial arrangement adapted to the geometry of micro-lens arrays needed for micro-concentrator solar cells is demonstrated. T2 - EMRS Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials" CY - Strasbourg, France DA - 22.05.2017 KW - Laser-induced forward transfer (LIFT) KW - Femtosecond laser KW - Micro-concentrator solar cell KW - Copper-indium-gallium-diselenide KW - CIGSe PY - 2017 U6 - https://doi.org/10.1007/s00339-017-1282-x SN - 1432-0630 SN - 0947-8396 VL - 123 SP - Article 670, 1 EP - 8 AN - OPUS4-42273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Hermens, U. A1 - Kirner, Sabrina V. A1 - Emonts, C. A1 - Comanns, P. A1 - Skoulas, E. A1 - Mimidis, A. A1 - Mescheder, H. A1 - Winands, K. A1 - Krüger, Jörg A1 - Stratakis, E. T1 - Mimicking lizard-like surface structures and their fluid transport upon ultrashort laser pulse irradiation of steel N2 - The wetting behavior of material surfaces can be controlled by surface structures. We functionalized case-hardened alloyed carbon steel to modify the wetting behavior using ultrashort laser pulses (fs- to ps-range). The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. An experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) rendered an assignment of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, micro cones, etc.) possible. Analyzing the surface using optical as well as scanning electron microscopy allowed the identification of morphologies providing the optimum similarity to the natural skin of non-moisture havesting lizards. For mimicking skin structures of moisture-harvesting lizards, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally revealed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting and directional fluid transport properties. The results suggest possible applications of the laser-structured surfaces. T2 - European Materials Research Society (EMRS) Spring Meeting 2017, Symposium K “Bioinspired and biointegrated materials as new frontiers nanomaterials VII” CY - Strasbourg, France DA - 22.05.2017 KW - Lizards KW - Laser processing KW - Steel KW - Fluid transport KW - Wetting PY - 2017 AN - OPUS4-40421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induzierte periodische Oberflächenstrukturen N2 - Der Vortrag gibt einen Überblick zu aktuellen Projekt- und Publikationsaktivitäten im BAM-Fachbereich 6.4 Technologien mit Nanowerkstoffen zum Thema “Laser-induzierte periodische Oberflächenstrukturen”. Die Herstellung solcher Mikro- und Nanostrukturen mittels ultrakurzer Laserpulse wird beschrieben, wodurch optische, chemische, mechanische oder biologische Oberflächenfunktionalsierungen vorgenommen werden können. Beispiele aus den Bereichen der Farbwirkung, der Benetzbarkeit mit Flüssigkeiten und der Reibungs- und Verschleissminderung werden erläutert. T2 - IFSW-Kolloquium CY - Universität Stuttgart, Stuttgart, Germany DA - 15.02.2017 KW - Femtosekundenlaser KW - Laser-Materialbearbeitung KW - Oberflächenfunktionalisierung KW - Nanostrukturen PY - 2017 AN - OPUS4-39215 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Höhm, S. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Applications of laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - SPIE Photonics West Conference, Symposium "Laser-Based Micro- and Nanoprocessing XI" CY - San Francisco, USA DA - 28.01.2017 KW - Laser-induced periodic surface structures KW - Surface functionalization KW - Femtosecond laser PY - 2017 AN - OPUS4-39216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Weise, Matthias A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.5% purity) were treated using three alternative methods, i.e., fs-laser processing in air, thermal heat treatment in an oven, or anodization in an electrochemical bath, all resulting in the formation of differently conditioned superficial oxide layers. The laser processing was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of several square-millimetres large surface areas covered homogeneously by these nanostructures. The thermal processing in the oven was done at two different temperatures, while the electrochemical anodization was performed at room temperature, aiming to generate different polymorphs of titanium oxide at similar oxide layer thickness. The irradiated surface regions were characterized by optical and scanning electron microscopy, and micro Raman spectroscopy. The tribological performance of the differently treated titanium surfaces was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in un-additivated paraffin oil and fully formulated engine oil as lubricants. The specific tribological performance of the differently treated surfaces is discussed on the basis of possible physical and chemical mechanisms. T2 - International Conference on Laser Ablation, COLA 2017 CY - Marseille, France DA - 03.09.2017 KW - Femtosecond laser KW - Oxidation KW - Laser-induced periodic surface strcutures, LIPSS KW - Friction KW - Wear PY - 2017 AN - OPUS4-42032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn T1 - Scattering on scattering N2 - Ultrafast experiments can reveal the spatiotemporal dynamics of nanostructure formation via scattering in background-free optical dark-field microscopy. KW - Ultrafast microscopy KW - Scattering KW - Darkfield microscopy KW - Laser ablation PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-411596 SN - 2047-7538 VL - 6 SP - e17088, 1 EP - 2 PB - Springer Nature AN - OPUS4-41159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina V. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures — a scientific evergreen N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser ablation KW - Nanostructures KW - Surface functionalization KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) PY - 2017 U6 - https://doi.org/10.1109/JSTQE.2016.2614183 SN - 1077-260X SN - 1558-4542 VL - 23 IS - 3 SP - 9000615 PB - IEEE AN - OPUS4-38633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 U6 - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Höhm, S. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Applications of laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - SPIE Photonics West Conference, Laser-based Micro- and Nanoprocessing XI CY - San Francisco, USA DA - 27.01.2017 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Application PY - 2017 SN - 978-1-5106-0625-8 SN - 978-1-5106-0626-5 U6 - https://doi.org/10.1117/12.2250919 SN - 0277-786X SN - 1996-756X VL - 10092 SP - Article UNSP 100920N, 100920N-1 EP - 100920N-9 PB - SPIE CY - Bellingham, USA AN - OPUS4-39305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -