TY - JOUR A1 - Stratakis, E. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Siegel, J. A1 - Tsibidis, G.D. A1 - Skoulas, E. A1 - Papadopoulos, A. A1 - Mimidis, A. A1 - Joel, A.-C. A1 - Comanns, P. A1 - Krüger, Jörg A1 - Florian, C. A1 - Fuentes-Edfuf, Y. A1 - Solis, J. A1 - Baumgartner, W. T1 - Laser engineering of biomimetic surfaces N2 - The exciting properties of micro- and nano-patterned surfaces found in natural species hide a virtually endless potential of technological ideas, opening new opportunities for innovation and exploitation in materials science and engineering. Due to the diversity of biomimetic surface functionalities, inspirations from natural surfaces are interesting for a broad range of applications in engineering, including phenomena of adhesion, friction, wear, lubrication, wetting phenomena, self-cleaning, antifouling, antibacterial phenomena, thermoregulation and optics. Lasers are increasingly proving to be promising tools for the precise and controlled structuring of materials at micro- and nano-scales. When ultrashort-pulsed lasers are used, the optimal interplay between laser and material parameters enables structuring down to the nanometer scale. Besides this, a unique aspect of laser processing technology is the possibility for material modifications at multiple (hierarchical) length scales, leading to the complex biomimetic micro- and nano-scale patterns, while adding a new dimension to structure optimization. This article reviews the current state of the art of laser processing methodologies, which are being used for the fabrication of bioinspired artificial surfaces to realize extraordinary wetting, optical, mechanical, and biological-active properties for numerous applications. The innovative aspect of laser functionalized biomimetic surfaces for a wide variety of current and future applications is particularly demonstrated and discussed. The article concludes with illustrating the wealth of arising possibilities and the number of new laser micro/nano fabrication approaches for obtaining complex high-resolution features, which prescribe a future where control of structures and subsequent functionalities are beyond our current imagination. KW - Biomimetic surfaces KW - Laser processing KW - Surface functionalization KW - Bioinspiration KW - Bionic materials PY - 2020 DO - https://doi.org/10.1016/j.mser.2020.100562 SN - 0927-796X VL - 141 SP - 100562-1 EP - 100562-47 PB - Elsevier B.V. AN - OPUS4-50927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lasagni, A. F. A1 - Bonse, Jörn T1 - Editorial: Laser micro- and nano-material processing – Part 2 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Applications KW - Laser processing KW - Microstructures KW - Nanostructures PY - 2020 DO - https://doi.org/10.1515/aot-2020-0025 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 SP - 111 EP - 112 PB - De Gruyter CY - Berlin AN - OPUS4-50995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical, and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelengths, pulse durations and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces, and bacterial and cell growth for medical devices, among many others. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2020 DO - https://doi.org/10.2351/7.0000103 SN - 1938-1387 VL - 32 IS - 2 SP - 022063 PB - Laser Institute of America AN - OPUS4-50780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Lasagni, A. F. T1 - Editorial: Laser micro- and nano-material processing – Part 1 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Laser processing KW - Microstructures KW - Nanostructures KW - Applications PY - 2020 DO - https://doi.org/10.1515/aot-2020-0009 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 1-2 SP - 7 EP - 9 PB - De Gruyter CY - Berlin AN - OPUS4-50797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -