TY - GEN A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Krüger, Jörg A1 - Kautek, Wolfgang ED - Phipps, C. T1 - Femtosecond laser micromachining of technical materials N2 - Micromachining experiments were performed with Ti:sapphire laser pulses (130 fs - 150 fs, 800 nm, approximately 10 Hz) in air. Employing the direct focusing technique, highly absorbing titanium nitride (TiN) and weakly absorbing polyimide (PI) and polymethylmethacrylate (PMMA) served as target materials. The lateral and vertical precision of the laser ablation and morphological features were characterized by scanning force (SFM), scanning electron (SEM) and optical microscopy. For TiN, incubation can be observed, i.e. the single-pulse surface damage threshold (0.26 J/cm2) is by a factor of two greater than the threshold for 100 pulses. Ablation rates below 10 nm per pulse can be achieved. The evolution of sub-wavelength ripples is presented in dependence on pulse number and laser fluence, respectively. The incubation behavior of the polymers can be described by an accumulation model as for TiN. Experiments on PI with varying focal lengths result in the same modification thresholds. Different polarization states of light (linear, circular) lead to a variation of the ablation rate and to various morphological patterns in the ablation craters (wavelength ripples, cones). Swelling of PMMA occurred at fluences below the ablation threshold. T2 - 3rd SPIE's International Conference on High-Power Laser Ablation CY - Santa Fe, NM, USA DA - 24.04.2000 KW - Ablation KW - Femtosecond pulse laser KW - Laser processing KW - Micromachining KW - Polymer KW - Titanium nitride KW - Ripples PY - 2000 SN - 0-8194-3700-X DO - https://doi.org/10.1117/12.407346 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 4065 SP - 161 EP - 172 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Wrobel, J. M. T1 - Femtosecond pulse laser machining of InP wafers N2 - Ablation of indium phosphide wafers in air was performed with 130 fs laser pulses at a wavelength of 800 nm at a low repetition rate of 10 Hz. In order to evaluate the role of the incubation effects, the relationship between the number of laser pulses used for the ablation and the threshold fluence was studied. Particular attention was paid to the chemical composition, surface morphology and structural variations of the ablated area. T2 - 5th Laser Applications in Microelectronics and Optoelectronics Manufacturing Conference (LAMOM) CY - San José, CA, USA DA - 240.01.2000 KW - Femtosecond laser ablation KW - Indium phosphide KW - Auger electron spectroscopy PY - 2000 SN - 0-8194-3550-3 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 3933 SP - 280 EP - 287 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Wrobel, J. M. T1 - Femtosecond-Pulse Laser Machining of Semiconducting Materials N2 - Summary form only given. Machining investigations of crystalline silicon have been performed with laser pulses at a wavelength of 780 nm in the range between 5 fs and 400 fs. Applying 100 pulses per spot, surface damage thresholds were determined by the measurement of the damage diameter. In this pulse duration regime, the threshold fluences were nearly constant. Single-pulse investigations with 5 fs pulses yielded a value of about 0.15 J cm-2 identical to the multi-pulse experiment. This is in contradiction to the behaviour of dielectrics where incubation effects alter the optical properties down to the 5 fs pulse regime. Employing laser pulses with a duration of 130 fs at a wavelength of 800 nm, single-pulse ablation thresholds of 0.23 J cm-2 and 0.16 J cm-2 were determined for Si and InP in air, respectively. The threshold fluence was calculated from the linear relation between the square of the diameters versus the logarithm of the laser fluences. T2 - CLEO/Europe 2000 ; Conference on Lasers and Electro-Optics Europe ; Conférence Européenne sur les Lasers et l'Electro-Optique ; CLEO/Europe-IQEC CY - Nice, France DA - 2000-09-10 PY - 2000 SN - 0-7803-6319-1 DO - https://doi.org/10.1109/CLEOE.2000.910410 PB - IEEE Service Center CY - Piscataway, NJ AN - OPUS4-958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rudolph, Pascale A1 - Krüger, Jörg A1 - Baudach, Steffen A1 - Kautek, Wolfgang T1 - Femtosecond pulse laser processing of TiN on silicon N2 - Ultrashort pulse laser microstructuring (pulse duration 130 fs, wavelength 800 nm, repetition rate 2 Hz) of titanium nitride (TiN) films on silicon substrates was performed in air using the direct focusing technique. The lateral and vertical precision of laser ablation was evaluated. The TiN ablation threshold changed with the number of pulses applied to the surface due to an incubation effect. An ablation depth per pulse below the penetration depth of light was observed. Columnar structures were formed in the silicon substrate after drilling through the TiN layer. KW - Femtosecond laser ablation KW - Titanium nitride KW - Silicon KW - Optical properties PY - 2000 DO - https://doi.org/10.1016/S0169-4332(99)00481-X SN - 0169-4332 SN - 1873-5584 VL - 154-155 SP - 659 EP - 663 PB - North-Holland CY - Amsterdam AN - OPUS4-802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baudach, Steffen A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate N2 - Ablation experiments with ultrashort laser pulses (pulse duration 150 fs, wavelength 800 nm) on polymers (PC, PMMA) relevant for biomedical technology have been performed in air. The lateral and vertical machining precision was evaluated by optical, atomic force and scanning electron microscopy. The ablation threshold reaches values in the range of 0.5–2.5 J/cm2 and depends significantly on the number of laser pulses applied to the same spot. The hole diameters are influenced by the laser fluence and the number of laser pulses. The relation between the ablation threshold and the number of laser pulses applied to the same spot is described in accordance with an incubation model. KW - Femtosecond laser ablation KW - Polymer KW - Polycarbonate KW - Polymethylmethacrylate PY - 2000 DO - https://doi.org/10.1016/S0169-4332(99)00474-2 SN - 0169-4332 SN - 1873-5584 VL - 154-155 SP - 555 EP - 560 PB - North-Holland CY - Amsterdam AN - OPUS4-803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Brzezinka, Klaus-Werner A1 - Meixner, A.J. T1 - Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy N2 - The surface modification of single-crystalline silicon induced by single 130 femtosecond (fs) Ti:sapphire laser pulses (wavelength 800 nm) in air is investigated by means of micro Raman spectroscopy (?-RS), atomic force microscopy and scanning laser microscopy. Depending on the laser fluence, in some regions the studies indicate a thin amorphous top-layer as well as ablated and recrystallized zones. The single-pulse threshold fluences for melting, ablation and polycrystalline recrystallization are determined quantitatively. Several different topographical surface structures (rims and protrusions) are found. Their formation is discussed in the context of recent studies of the laser irradiation of silicon. In combination with a thin-film optical model, the thickness of the amorphous layer is determined by two independent and nondestructive optical methods to be in the order of several 10 nm. KW - Femtosecond laser ablation KW - Silicon KW - Raman spectroscopy KW - Atomic force microscopy KW - Laser scanning microscopy PY - 2004 DO - https://doi.org/10.1016/S0169-4332(03)00881-X SN - 0169-4332 SN - 1873-5584 VL - 221 IS - 1-4 SP - 215 EP - 230 PB - North-Holland CY - Amsterdam AN - OPUS4-3224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Wrobel, Jerzy A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Ultrashort-pulse laser ablation of indium phosphide in air N2 - Ablation of indium phosphide wafers in air was performed with low repetition rate ultrashort laser pulses (130 fs, 10 Hz) of 800 nm wavelength. The relationships between the dimensions of the craters and the ablation parameters were analyzed. The ablation threshold fluence depends on the number of pulses applied to the same spot. The single-pulse ablation threshold value was estimated to be fth(1)=0.16 J/cm2. The dependence of the threshold fluence on the number of laser pulses indicates an incubation effect. Morphological and chemical changes of the ablated regions were characterized by means of scanning electron microscopy and Auger electron spectroscopy. PY - 2001 DO - https://doi.org/10.1007/s003390000596 SN - 0947-8396 VL - 72 IS - 1 SP - 89 EP - 94 PB - Springer CY - Berlin AN - OPUS4-1068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baudach, Steffen A1 - Bonse, Jörn A1 - Kautek, Wolfgang T1 - Ablation experiments on polyimide with femtosecond laser pulses N2 - Some applications of polymer films require the microstructuring of partly uneven substrates. This cannot be achieved by conventional photolithography, usually performed with ultraviolet short-pulse lasers (excimer, fourth harmonic Nd:YAG). When processing thermally sensitive or undoped polymers with low optical absorption, the use of femtosecond laser pulses can improve the ablation precision, also reducing the heat-affected zone. Therefore, a Ti:sapphire laser system was employed to perform ablation experiments on polyimide (PI). The irradiated areas were evaluated by means of optical and scanning electron microscopy. Highly oriented ripple structures, which are related to the polarization state of the laser pulses, were observed in the cavities. The relationship between the ablation threshold fluence and the number of laser pulses applied to the same spot is described in accordance with an incubation model. T2 - 5th International Conference on Laser Ablation ; COLA '99 CY - Göttingen, Germany DA - 1999-07-19 KW - Polyimide KW - Laser KW - Ablation KW - Femtosecond laser PY - 1999 DO - https://doi.org/10.1007/s003390051424 SN - 0947-8396 VL - 69 IS - 7 SP - S395 EP - S398 PB - Springer CY - Berlin AN - OPUS4-780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rudolph, Pascale A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass N2 - Laser ablation with femtosecond pulses (130 fs, wavelength 800 nm, repetition rate 2 Hz) was compared with nanosecond-pulse ablation (10 ns, wavelength 266 nm, repetition rate 2.5 Hz) of bariumalumoborosilicate glass in air using the direct focusing technique. Different ablation thresholds and heat-affected zones were observed. The lateral and vertical machining precision was evaluated. Single nanosecond laser pulses in the far UV resulted in a bubble or a circular hole in the centre of the illuminated spot, depending on the applied fluence. The ablation behaviour in the case of near-IR femtosecond pulses contrasted to this. Bubble formation was not detected. It needed repeated pulses at the same spot to modify the surface until material removal could be observed (incubation). Cavity dimensions of less than the beam diameter were achieved in this case. T2 - 5th International Conference on Laser Ablation ; COLA '99 CY - Göttingen, Germany DA - 1998-07-19 KW - Laser ablation KW - Bariumalumoborosilicate glass PY - 1999 DO - https://doi.org/10.1007/s003390051524 SN - 0947-8396 VL - 69 IS - 7 SP - S763 EP - S766 PB - Springer CY - Berlin AN - OPUS4-801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Lenzner, Matthias T1 - Modification and Ablation of Semiconductors by Femtosecond Laser Pulses N2 - Physical and chemical phenomena resulting from irradiation of silicon and indium phosphide with ultrashort laser pulses (~100fs) were investigated with respect to the difference between single- and multiple-pulse treatment. In the single-pulse case, several processes were identified: modification, recrystallization and ablation. All processes exhibit a distinct treshold behaviour. A two photon-absorption coefficient can be determined from a single spatial ablation profile. Accumulation effects were observed for multi-pulse illumination. Different morphological features like bubbles, rippels and microcolumns were found. PY - 2002 VL - 5 IS - 2 SP - 437 EP - 461 PB - Transworld Research Network CY - Trivandrum AN - OPUS4-1585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -