TY - JOUR A1 - Grehn, M. A1 - Seuthe, T. A1 - Reinhardt, F. A1 - Höfner, M. A1 - Griga, N. A1 - Eberstein, M. A1 - Bonse, Jörn T1 - Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: An analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy N2 - The redeposited material (debris) resulting from ablation of a potassium–magnesium silicate glass upon scanning femtosecond laser pulse irradiation (130 fs, 800 nm) in air environment is investigated by means of three complementary surface analytical methods. Changes in the electronic band structure of the glass constituent Magnesium (Mg) were identified by X-ray Absorption Near Edge Structure spectroscopy (XANES) using synchrotron radiation. An up-shift of ≈0.8 eV of a specific Magnesium Κ-edge absorption peak in the spectrum of the redeposited material along with a significant change in its leading edge position was detected. In contrast, the surface left after laser ablation exhibits a downshift of the peak position by ≈0.9 eV. Both observations may be related to a change of the Mg coordinative state of the laser modified/redeposited glass material. The presence of carbon in the debris is revealed by micro Raman spectroscopy (µ-RS) and was confirmed by energy dispersive X-ray spectroscopy (EDX). These observations are attributed to structural changes and chemical reactions taking place during the ablation process. KW - Femtosecond laser ablation KW - Potassium-magnesium silicate glass KW - Debris KW - XANES KW - EDX KW - Raman spectroscopy PY - 2014 U6 - https://doi.org/10.1016/j.apsusc.2013.10.028 SN - 0169-4332 SN - 1873-5584 VL - 302 SP - 286 EP - 290 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seuthe, T. A1 - Höfner, M. A1 - Reinhardt, F. A1 - Tsai, W.J. A1 - Bonse, Jörn A1 - Eberstein, M. A1 - Eichler, H.J. A1 - Grehn, M. T1 - Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy N2 - The effects of femtosecond laser pulse irradiation on the glass structure of alkaline silicate glasses were investigated by x-ray absorption near edge structure spectroscopy using the beamline of the Physikalisch-Technische Bundesanstalt at the electron synchrotron BESSY II in Berlin (Germany) by analyzing the magnesium Κ-edge absorption peak for different laser fluences. The application of fluences above the material modification threshold (2.1 J/cm²) leads to a characteristic shift of ~1.0 eV in the Κ-edge revealing a reduced (~3%) mean magnesium bond length to the ligated oxygen ions (Mg-O) along with a reduced average coordination number of the Mg ions. KW - Glass KW - Glass structure KW - Laser beam effects KW - Magnesium compounds KW - Potassium compounds KW - XANES PY - 2012 U6 - https://doi.org/10.1063/1.4723718 SN - 0003-6951 SN - 1077-3118 VL - 100 IS - 22 SP - 224101-1 EP - 224101-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-25918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grehn, M. A1 - Reinhardt, F. A1 - Bonse, Jörn A1 - Eberstein, M. A1 - Seuthe, T. T1 - Response to "comment on 'femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy'" KW - Bond lengths KW - Glass KW - High-speed optical techniques KW - Magnesium compounds KW - Monochromators KW - Potassium compounds KW - Silicon compounds KW - XANES PY - 2013 U6 - https://doi.org/10.1063/1.4804148 SN - 0003-6951 SN - 1077-3118 VL - 102 SP - 196102-1 - 196102-2 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-28520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -