TY - JOUR A1 - Porta-Velilla, L. A1 - Turan, N. A1 - Cubero, Á. A1 - Shao, W. A1 - Li, H. A1 - de la Fuente, G.F. A1 - Martínez, E. A1 - Larrea, Á. A1 - Castro, M. A1 - Koralay, H. A1 - Çavdar, Ş. A1 - Bonse, Jörn A1 - Angurel, L.A. T1 - Highly Regular Hexagonally-Arranged Nanostructures on Ni-W Alloy Tapes upon Irradiation with Ultrashort UV Laser Pulses JF - Nanomaterials N2 - Nickel tungsten alloy tapes (Ni—5 at% W, 10 mm wide, 80 µm thick, biaxially textured) used in second-generation high temperature superconductor (2G-HTS) technology were laser-processed in air with ultraviolet ps-laser pulses (355 nm wavelength, 300 ps pulse duration, 250–800 kHz pulse repetition frequency). By employing optimized surface scan-processing strategies, various laser-generated periodic surface structures were generated on the tapes. Particularly, distinct surface microstructures and nanostructures were formed. These included sub-wavelength-sized highly-regular hexagonally-arranged nano-protrusions, wavelength-sized line-grating-like laser-induced periodic surface structures (LIPSS, ripples), and larger irregular pyramidal microstructures. The induced surface morphology was characterized in depth by electron-based techniques, including scanning electron microscopy (SEM), electron back scatter diffraction (EBSD), cross-sectional transmission electron microscopy (STEM/TEM) and energy dispersive X-ray spectrometry (EDS). The in-depth EBSD crystallographic analyses indicated a significant impact of the material initial grain orientation on the type of surface nanostructure and microstructure formed upon laser irradiation. Special emphasis was laid on high-resolution material analysis of the hexagonally-arranged nano-protrusions. Their formation mechanism is discussed on the basis of the interplay between electromagnetic scattering effects followed by hydrodynamic matter re-organization after the laser exposure. The temperature stability of the hexagonally-arranged nano-protrusion was explored in post-irradiation thermal annealing experiments, in order to qualify their suitability in 2G-HTS fabrication technology with initial steps deposition temperatures in the range of 773–873 K. KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser processing KW - Hexagonally-arranged nano-protrusions KW - Second-generation high temperature superconductor technology KW - Electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552551 DO - https://doi.org/10.3390/nano12142380 SN - 2079-4991 VL - 12 IS - 14 SP - 1 EP - 23 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lifka, S. A1 - Harsányi, K. A1 - Baumgartner, E. A1 - Pichler, L. A1 - Baiko, D. A1 - Wasmuth, Karsten A1 - Heitz, J. A1 - Meyer, M. A1 - Joel, A.-C. A1 - Bonse, Jörn A1 - Baumgartner, W. ED - Mail, M. T1 - Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders JF - Beilstein Journal of Nanotechnology N2 - Nanofibers are drawing the attention of engineers and scientists because their large surface-to-volume ratio is favorable for applications in medicine, filter technology, textile industry, lithium-air batteries, and optical sensors. However, when transferring nanofibers to a technical product in the form of a random network of fibers, referred to as nonwoven fabric, the stickiness of the freshly produced and thus fragile nanofiber nonwoven remains a problem. This is mainly because nanofibers strongly adhere to any surface because of van der Waals forces. In nature, there are animals that are actually able to efficiently produce, process, and handle nanofibers, namely cribellate spiders. For that, the spiders use the calamistrum, a comb-like structure of modified setae on the metatarsus of the hindmost (fourth) legs, to which the 10–30 nm thick silk nanofibers do not stick due to a special fingerprint-like surface nanostructure. In this work, we present a theoretical model of the interaction of linear nanofibers with a sinusoidally corrugated surface. This model allows for a prediction of the adhesive interaction and, thus, the design of a suitable surface structure to prevent sticking of an artificially nonwoven of nanofibers. According to the theoretical prediction, a technical analogon of the nanoripples was produced by ultrashort pulse laser processing on different technically relevant metal surfaces in the form of so-called laser-induced periodic surface structures (LIPSS). Subsequently, by means of a newly established peel-off test, the adhesion of an electrospun polyamide fiber-based nonwoven was quantified on such LIPSS-covered aluminium alloy, steel, and titanium alloy samples, as well as on polished (flat) control samples as reference and, additionally, on samples with randomly rough surfaces. The latter revealed that the adhesion of electrospun nanofiber nonwoven is significantly lowered on the nanostructured surfaces compared with the polished surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Calamistrum KW - Electrospinning KW - Nanofibers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561799 DO - https://doi.org/10.3762/bjnano.13.105 SN - 2190-4286 VL - 13 SP - 1268 EP - 1283 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-56179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -