TY - CHAP A1 - Rosenfeld, A. A1 - Höhm, S. A1 - Krüger, Jörg A1 - Bonse, Jörn ED - Reedijk, J. T1 - Dynamics of ultrashort double-pulse laser ablation of solid surfaces T2 - Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry N2 - Given their unique properties, ultrashort laser pulses with durations in the femtosecond to picosecond range currently open new avenues in the field of laser materials processing, resulting in groundbreaking new applications based on laser-induced surface functionalization. This article reviews the usability of temporally distributed energy deposition via double-pulse irradiation in applications based on laser ablation. This includes simple new techniques for surface nanostructuring and improved sensitivities in spectroscopic material analyses. KW - Carrier excitation KW - Double-pulse KW - Interferometer KW - Laser ablation KW - Femtosecond PY - 2017 UR - https://www.sciencedirect.com/science/article/pii/B9780124095472141277 SN - 978-0-12-409547-2 DO - https://doi.org/10.1016/B978-0-12-409547-2.14127-7 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-43594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Wirth, Thomas A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Chemical effects in the formation of fs-laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS, ripples) on metals and semiconductors in ambient air is usually accompanied by superficial oxidation effects - widely neglected in the current literature. In this contribution, chemical, structural, and mechanical alterations in the formation of femtosecond LIPSS are characterized by a variety of surface analytical techniques, including energy dispersive X-ray analyses (EDX), X-ray photoelectron spectroscopy (XPS), micro Raman spectroscopy (µ-RS), and depth-profiling Auger electron microscopy (AEM). Alternative routes of electrochemical and thermal oxidation allow to qualify the relevance of superficial oxidation effects on the tribological performance in oil lubricated reciprocating sliding tribological tests (RSTT). It is revealed that the fs-laser processing of near-wavelength sized LIPSS on metals leads to the formation of a few hundreds of nanometer thick graded oxide layer, consisting mainly of amorphous oxides. Regardless of its reduced hardness and limited thickness, this nanostructured surface layer can effciently prevent a direct metal-metal contact in the RSTT and may also act as an anchor layer for specific wear-reducing additives contained in the engine oil involved T2 - 8th International LIPSS Workshop CY - Bochum, Germany DA - 27.09.2018 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond KW - Oxidation KW - Tribology PY - 2018 AN - OPUS4-46106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -