TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon N2 - The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSS) on single-crystalline silicon upon irradiation with single (N = 1) and multiple (N ≤ 1000) linearly polarized femtosecond (fs) laser pulses (pulse duration τ = 130 fs, central wavelength λ = 800 nm) in air is studied experimentally. Scanning electron microscopy (SEM) and optical microscopy are used for imaging of the ablated surface morphologies, both revealing LIPSS with periodicities close to the laser wavelength and an orientation always perpendicular to the polarization of the fs-laser beam. It is experimentally demonstrated that these LIPSS can be formed in silicon upon irradiation by single fs-laser pulses—a result that is additionally supported by a recent theoretical model. Two-dimensional Fourier transforms of the SEM images allow the detailed analysis of the distribution of the spatial frequencies of the LIPSS and indicate, at a fixed peak fluence, a monotonous decrease in their mean spatial period between ~770 nm (N = 1) and 560 nm (N = 1000). The characteristic decrease in the LIPSS period is caused by a feedback-mechanism acting upon excitation of surface plasmon polaritons at the rough silicon surface which is developing under the action of multiple pulses into a periodically corrugated surface. KW - Elemental semiconductors KW - Fourier transforms KW - Laser beam effects KW - Optical microscopy KW - Polarisation KW - Polaritons KW - Scanning electron microscopy KW - Silicon KW - Surface morphology KW - Surface plasmons PY - 2010 UR - http://jap.aip.org/resource/1/japiau/v108/i3/p034903_s1 U6 - https://doi.org/10.1063/1.3456501 SN - 0021-8979 SN - 1089-7550 VL - 108 IS - 3 SP - 034903-1 - 034903-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Probing the heat affected zone by chemical modifications in femtosecond pulse laser ablation of titanium nitride films in air N2 - A new approach is presented to quantify the so-called "heat affected zone" (HAZ) during femtosecond laser pulse processing. Ablation of titanium nitride (TiN) thin films (~3 μm thickness) by multiple femtosecond laser pulses (τ=130 fs, λ=800 nm) in air environment was studied by means of two different surface analytical methods both being sensitive to chemical alterations at the surface. Scanning Auger electron microscopy was applied for a visualization of the spatial distribution of specific elements (Ti, O) within the laser-modified areas. The chemical state of the irradiated surface was revealed by complementary x-ray photoelectron spectroscopy. Both methods were used for a depth-profiling chemical analysis (tracking the elements Ti, N, O, and C) using an Ar-ion beam for surface sputtering. In a narrow laser fluence range slightly below the ablation threshold of TiN significant superficial oxidation can be observed leading to the formation of substoichiometric TiO2-x. At fluences above the ablation threshold, an increased titanium concentration is observed within the entire ablation craters. Following upon sputter removal the elemental distribution into the depth of the nonablated material, the results allow an estimation of the heat-affected zone for femtosecond laser ablation in air environment. According to our analyses, the HAZ extends up to a few hundreds of nanometers into the nonablated material. KW - Femtosecond laser ablation KW - Heat affected zone KW - Titanium nitride KW - Scanning Auger electron microscopy KW - X-ray KW - Photoelektron spectroscopy PY - 2010 UR - http://link.aip.org/link/?JAP/107/054902 U6 - https://doi.org/10.1063/1.3311552 SN - 0021-8979 SN - 1089-7550 VL - 107 IS - 5 SP - 054902-1 - 054902-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-20949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Bachelier, G. A1 - Wiggins, S. M. A1 - Siegel, J. A1 - Solis, J. A1 - Krüger, Jörg A1 - Sturm, Heinz T1 - Femtosecond laser ablation of indium phosphide in air: dynamical, structural and morphological evolution N2 - The irradiation of single-crystalline indium phosphide (c-InP) by Ti:sapphire femtosecond laser pulses (130 fs, 800 nm) in air is studied by means of in-situ time resolved reflectivity measurements [fs-time-resolved microscopy (100 fs-10 ns) and point probing analysis (ns - µs)] and by complementary ex-situ surface analytical methods (Micro Raman Spectroscopy, Scanning Force, and Optical Microscopy). The dynamics of melting, ablation, and optical breakdown as well as structural changes resulting from rapid solidification are investigated in detail. Different laser-induced surface morphologies are characterized and discussed on the basis of recent ablation and optical breakdown models. KW - Femtosecond laser ablation KW - Optical breakdown KW - Time-resolved measurements KW - Semiconductor KW - Indium phosphide PY - 2010 SN - 1454-4164 VL - 12 IS - 3 SP - 421 EP - 426 PB - INOE & INFM CY - Bucharest AN - OPUS4-21082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Solis, J. A1 - Spielmann, C. A1 - Lippert, T. A1 - Krüger, Jörg T1 - Damage mechanisms in polymers upon NIR femtosecond pulse laser irradiation: sub-threshold processes and their implications for laser safety applications N2 - This contribution investigates laser-induced damage of thin film and bulk polymer samples, with the focus on physical processes occurring close to the damage threshold. In-situ real-time reflectivity (RTR) measurements with picosecond (ps) and nanosecond (ns) temporal resolution were performed on thin polymer films on a timescale up to a few microseconds (µs). A model for polymer thin film damage is presented, indicating that irreversible chemical modification processes take place already below the fluence threshold for macroscopic damage. On dye-doped bulk polymer filters (as used for laser goggles), transmission studies using fs-and ps-laser pulses reveal the optical saturation behavior of the material and its relation to the threshold of permanent damage. Implications of the sub-threshold processes for laser safety applications will be discussed for thin film and bulk polymer damage. T2 - International high-power laser ablation conference CY - Santa Fe, USA DA - 2010-04-18 KW - Polymer KW - Laser damage KW - Ultrashort laser pulses KW - Time-resolved reflectivity measurements KW - Laser safety PY - 2010 UR - http://link.aip.org/link/?APCPCS/1278/56/1 SN - 978-0-7354-0828-9 U6 - https://doi.org/10.1063/1.3507148 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1278 SP - 56 EP - 64 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-22156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -