TY - CONF A1 - Fischer, G. A1 - Bohse, Jürgen T1 - Observation and analysis of fracture processes in concrete with acoustic emission (AE) and digital image correlation (DIC) N2 - Fracture processes in concrete can be characterized by the formation of a Fracture Process Zone (FPZ), which is a region of the crack extending between the elastic region ahead of the crack tip over the crack bridging zone to the region where the crack opening is sufficiently large to prevent transfer of load across the crack faces. The formation of cracks and the development of the FPZ have typically been documented by Acoustic Emission (AE) methods and important conclusions regarding the nature of the FPZ and the propagation mechanisms of concrete have been drawn to form the basis of current fracture models for concrete. The study presented in this paper focuses on Mode I cracking of concrete using compact tension specimens and is comparing the results of AE measurements to those obtained from documenting the cracking process by Digital Image Correlation (DIC). The findings from this comparison show that distinctly different AE events occur ahead of the crack tip, in the cementitious matrix at the crack tip and in the wake of the crack due to the increasing separation of the crack flanks and further opening of the crack. The DIC measurements indicate that crack initiation occurs with locally corresponding AE signals and furthermore suggest a continuous path of the crack from initiation to eventual transition to the stress-free zone. Based on these comparative measurements the study suggests that crack formation in unreinforced concrete is initiated by an individual, sharp microcrack rather than by a region of diffuse microcracking ahead of the eventual crack tip. Later on sharp crack branches originate from the main macrocrack path. Furthermore, the measurements with AE and DIC result in information on the nature of the deformation mechanisms occurring in distinct regions of the entire cracking process. AE signals detected using wideband sensors show quite different characteristics in time (waveform) and frequency (bandwidth) domain. T2 - 31st Conference of the European working group on acoustic emission (EWGAE) CY - Dresden, Germany DA - 03.09.2014 KW - Concrete KW - Acoustic emission KW - Digital image correlation KW - Signal analysis KW - Fracture process KW - Source mechanisms PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-313471 SN - 978-3-940283-63-4 IS - DGZfP-BB 149 SP - Th.3.A.4, 1 EP - 8 PB - BAM / DGZfP AN - OPUS4-31347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hussels, Maria-Teresa A1 - Chruscicki, Sebastian A1 - Baer, Wolfram A1 - Wossidlo, Peter A1 - Weltschev, Margit A1 - Schmidt, Dirk A1 - Baensch, Franziska A1 - Bohse, Jürgen A1 - Prager, Jens A1 - Habib, Abdel Karim T1 - AGIFAMOR – Application of distributed acoustic and fibre optic sensors for continuous monitoring of pipes N2 - Pipelines and industrial piping systems are particularly relevant regarding technical safety, availability and maintenance. Large flow rates of hazardous substances imply that even smallest leakages can lead to high environmental impacts. Therefore, and to ensure the availability of infrastructure, an early detection and localization of potentially hazardous degradations to the walls (e.g. cracks, pittings, sedimentation, etc.) of the containments is necessary. However, in many cases it is not feasible to equip pipelines with a large number of point sensors at reasonable expense. The principle of distributed fibre optic sensing relies on one single optical fibre, which simultaneously acts as a spatially continuous sensor as well as the signal transducer. Therefore, extensive structures can be provided with this type of sensor with comparatively low efforts. As a consequence, monitoring oil and gas pipelines using distributed fibre optic sensors is on the upswing. Besides the established methods to measure temperature and strain, distributed acoustic sensing (DAS) has lately received considerable attention as a means to detect and localize third party threats to pipelines (approach of vehicles, digging, mechanical manipulation). The so far not utilized potential of DAS as a means for continuous condition monitoring of pipes by detecting and localizing acoustic signals that point to certain damage scenarios, is currently under investigation in an interdisciplinary research project at BAM (AGIFAMOR, Ageing Infrastructures – Fibre Optic Monitoring of Pipes). In order to qualify distributed acoustic fibre optic sensors for this application area, we especially focus on detecting and identifying the relevant acoustic emissions of interesting degradations as well as on the optimal way of application of the optical fibres to the specimen to achieve an optimal signal transmission of acoustic signals. T2 - 12th Pipeline Technology Conference CY - Berlin, Germany DA - 02.05.2017 KW - Monitoring KW - Pipelines KW - Fibre optic sensing KW - Acoustic emission KW - Accelerometer PY - 2017 SN - 2198-428X VL - 2017 SP - Session 3.2 Leak Detection, 1 EP - 8 PB - EITEP (Euro Institute for Information and Technology Transfer in Environmental Protection) CY - Hannover AN - OPUS4-40186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -