TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Sintering and foaming of bioactive glasses N2 - Sintering, crystallization, and foaming of 44.8SiO2–2.5P2O3–36.5CaO–6.6Na2O–6.6K2O–3.0CaF2 (F3) and 54.6SiO2–1.7P2O3–22.1CaO–6.0Na2O–7.9K2O–7.7MgO (13–93) bioactive glass powders milled in isopropanol and CO2 were studied via heating microscopy, differential thermal analysis, vacuum hot extraction (VHE), Infrared spectroscopy, and time-of-flight secondary ion mass spectrometry. Full densification was reached in any case and followed by significant foaming. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750◦C, which hints on a thermally very stable species or mechanical trapping. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. KW - Bioactive Glass KW - Crystallization KW - Foaming KW - Sintering PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552454 SN - 0002-7820 SP - 1 EP - 11 PB - Wiley online library AN - OPUS4-55245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Wilbig, Janka A1 - Müller, Ralf A1 - Nawaz, Q. A1 - Boccaccini, A.R. T1 - 3D printing of crystallizing bioactive glasses N2 - Artificial bone replacement by individual customized three-dimensional resorbable bioactive glass has not yet been widely established in the clinical use. This is mainly due to the antagonism of sintering ability and suitable bioactivity. Competitive crystallization often prevents the generation of dense sintered bodies, especially for additive manufactured 3D structures. Previous studies of the fluoride-containing glass F3 have shown its potential to combine both sintering ability and suitable bioactivity. Furthermore, the occurring sintering blockade by surface crystallization of Na2CaSi2O6 was tunable by glass particle size. In this study the glasses F3, F3-Cu with 1 mol% CuO added at the expense of CaO and the well-known 13-93 were chosen to determine the influence of surface crystallization on 3D printed sinter bodies. For this purpose, grain size fractions in range of smaller 32 µm to 315 µm in fraction size of 6-20 µm were sieved from jaw crushed glass frit as well as glass cubes were cut from casted blocks for all glasses. Sintering behavior of both pressed and printed powder compacts was observed via heating microscopy. Crystallization was determined by DTA and crystallization progress was monitored on fractured sinter bodies and polished cubes via electron and laser scanning microscopy as well as with diffractometry. Depending on grain size the formation of crystalline support framework along former grain boundaries shows the capability to stabilize fully densified sinter bodies before softening. Beside of this, the generation of complex hierarchic porosity was possible as well. T2 - ICG Berlin 2022 CY - Berlin, Germany DA - 03.07.2022 KW - Bioactive Glass KW - Crystallization KW - Sintering KW - 3D printing PY - 2022 AN - OPUS4-55253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten T1 - Viskose Rissschließung in Gläsern und Glasmatrixkompositen N2 - Um die Langzeitbeständigkeit von Hochtemperatur-Festoxidbrennstoffzellen (SOFC) sicherzustellen, ist das grundlegende Verständnis der viskosen Schließung oder Heilung von Rissen, als Folge wechselnder thermischer oder mechanischer Belastung, in Gläsern und teilkristallinen Materialien ein entscheidender Faktor. In Glas ist die Rissheilung hauptsächlich durch viskoses Fließen bestimmt. In teilkristallinen Schmelzen bewirkt der kristalline Volumenanteil die Erhöhung der effektiven Viskosität. Um die Auswirkungen des kristallinen Volumenanteils auf die Rissheilung zu ergründen, wurden Glasmatrixkomposite mit variierten inerten kristallinen Fülleranteilen, die während der Wärme-behandlung konstant blieben, hergestellt. Verwendet wurde ein kristallisationsträges Natrium-Calcium-Silicatglas und ZrO2 als inerter Füller. Komplexe, reproduzierbare Rissstrukturen wurden durch Vickers-Eindrücke erzeugt und die viskose Rissschließung während isothermer Wärmebehandlungs-schritte mittels Laser-Scanning-Mikroskopie verfolgt. Die Untersuchungen zeigen, dass, verglichen zum füllerfreien Glas, der kristalline Phasenanteil die effektive Viskosität erhöht und dadurch großräumiges Fließen verlangsamt. Dies verzögert das Aufweiten der Risse. Dieser Effekt erschwert die Rissverkürzung und führt oftmals zu großen gerundeten Kavitäten und dadurch zu einer verzögerten Rissschließung. Wird dieses Aufweiten verringert, ist zunächst ein lokales viskoses Fließen der Restglasphase weiterhin gegeben, sodass sich die Risse sogar schneller schließen. Für kristalline Anteile > 27 Vol% bildet sich dann ein stabiles Perkolationsgerüst aus, das die weitere Rissschließung auch lokal unterbindet. Nur innerhalb größerer glasiger Bereiche ist hierbei noch eine Rissschließung zu beobachten. Ein Optimum der Risslängenverkürzung konnte bei 17 Vol% beobachtet werden. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Glas KW - Hochtemperaturbrennstoffzelle KW - Glasmatrixkomposit KW - Rissheilung PY - 2021 AN - OPUS4-54245 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Groh, D. A1 - Döhler, F. A1 - Brauer, D. S. T1 - Sintering and crystallization of new bioactive glasses N2 - Bioglass® 45S5 is mainly used clinically as powders, granules or pastes instead of sintered compacts. This is due to the inherent problem of crystallization during the sintering, which results in poor mechanical properties and reduced bioactivity. Recently, new bioactive glasses with improved crystallization stability have been developed as promising candidates for manufacturing of sintered powder compacts for bone regeneration, which combine improved sintering behavior with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkali oxide ratio was increased, sodium oxide was partially replaced by potassium oxide and up to 3 mol% calcium fluoride were added, in order to stabilize the glass against crystallization. The aim of this study was to investigate the sintering and crystallization behavior of these new bioactive glasses. Sintering and crystallization were characterized by heating microscopy, XRD, FTIR, SEM, and DTA. The results show that a sintered density of 88-99 % is achieved in contrast to only 57-67% for Bioglass® 45S5. In addition, FTIR and XRD analyses show that Bioglass® 45S5 crystallized during sintering while for the new glasses no crystalline phases are detected. The thermal properties of all glasses were studied by DTA measurements, and the influence of grain size was characterized. These studies showed that full densification can be attained for particle size < 32 µm, whereas coarser particles progressively increase residual porosity. Observed foaming phenomena, are strongly retarded by crystallization of beta-HAp. T2 - ICG 2016 CY - Shanghai, China DA - 07.04.2016 KW - Bioactive KW - Glass KW - Crystallization KW - Sintering PY - 2015 AN - OPUS4-38304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Groh, D. A1 - Döhler, F. A1 - Brauer, D. S. T1 - New bioactive glasses with improved sintering behavior N2 - Nowadays, the use of bioactive glasses is established for bone regeneration; however glasses are used mostly as powders, granules or in a paste. Sintered scaffolds are not used clinically, because of the in inherent problem of crystallization during the sintering process, resulting in poor mechanical properties and reduced bioactivity. The aim of this study was therefore to design new bioactive glasses, which combine improved processing and sintering with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkalioxide ratio was increased, sodiumoxide was partially replaced by potassiumoxide and up to 8 mol% calciumflorid were added, in order to stabilize the glass against crystallization. The sintering behavior of the new glasses was characterized by heating microscopy and compared to Bioglass® 45S5. The results showed that the new glasses achieved a sintered density of 88-99 % in contrast to only 57-67% for Bioglass® 45S5. In addition FTIR and XRD analyses showed that Bioglass® 45S5 crystallized during sintering while for the new glasses no crystalline phases were detected. The thermal properties of all glasses were studied by DTA and DSC measures, and the influence of grain size and heating rate were characterized. These studies showed a shift of start and end temperature of sintering process as well as the final density. The structure of sintered specimens during and after sintering was examined using light and electron microscopy (REM). T2 - Crystallization 2015 CY - Nagaoka, Japan DA - 11.10.2015 KW - Bioactive KW - Glass KW - Crystallization KW - Sintering PY - 2015 AN - OPUS4-38308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Brauer, D. S. T1 - Blähen, Mechanismus, Ursachen und Vermeidung N2 - Phänominilogische Studien des Blähens von bioactiven Gläsern verschiedener Zusammensetzung und Unteruschung des Einflusses einer Kristallisation. Die ausgasenden Komponenten wurden mittels Vakuumheißextraktion(VHE) und Infrarotspektroskopie identifiziert sowie der Einfluss von Korngröße, Mahldauer und -atmosphäre auf das Blähen unterucht. T2 - Glashüttentag 2015 CY - Freiberg, Germany DA - 29.09.2015 KW - Blähen KW - Glas KW - Bioaktiv KW - Kristallisation PY - 2015 AN - OPUS4-38309 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Brauer, D. S. T1 - Neue bioaktive Gläser mit verbessertem Sinterverhalten N2 - Bioaktive Gläser werden zur Knochenregeneration derzeit überwiegend in Form von Pulvern oder Pasten einge-setzt. Gesinterte Strukturen oder Fasergewebe werden hingegen bisher kaum klinisch genutzt. Grund hierfür sind die gegenläufigen Tendenzen von Prozessierbarkeit und Bioaktivität. Beim kommerziell etablierten Bioglass® 45S5 wird eine vollständige Sinterung durch Kristallisation verhindert. Aus diesem Grund war es das Ziel, neue Glaszusammensetzungen zu entwickeln, welche gleichermaßen eine gute Prozessierbarkeit und eine hohe Bioak-tivität aufweisen. Ausgehend vom Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) wurde das Calcium / Alkali-Verhältnis angehoben, Natriumoxid teilweise durch Kaliumoxid ersetzt und bis zu 8 mol% Calciumfluorid hinzugefügt, um dessen Tendenz zur Kristallisationsneigung zu verringern. Das Sinter- und Kristallisationsverhalten der neuen Gläser und der Einfluss der Korngrößenverteilung wurden mittels Partikelgrößenanalyse, Erhitzungsmikroskopie DTA, DSC, FTIR, XRD und REM untersucht. Die Ergebnisse zeigen, dass die neuentwickelten Gläser ein deutlich verbessertes Sinterverhalten aufweisen und relative Dichten von 88 – 99 % erreichen. Dagegen konnten vergleichbare Bioglass® 45S5 -Pulver nur bis auf 57 – 67 % gesintert werden. Diese Beobachtung sowie XRD- und FTIR-Messungen belegen, dass Bioglass® 45S5 bereits während des Sinterns kristallisiert wogegen die neu entwickelten Gläser erst nach dem vollständigen Verdichten kristallisieren. T2 - 90. Glastechnische Tagung (Deutsche Glastechnische Gesellschaft e.V.) CY - Goslar, Germany DA - 06.06.2016 KW - Sintern KW - Glas KW - Bioaktiv KW - Kristallisation PY - 2016 AN - OPUS4-38310 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Brauer, D. S. T1 - Sintering and crystallization of new bioactive glasses N2 - Bioglass® 45S5 is mainly used clinically as powders, granules or pastes instead of sintered compacts. This is due to the inherent problem of crystallization during sintering. Recently, new bioactive glasses with improved crys-tallization stability have been developed as promising candidates for manufacturing of sintered powder compacts for bone regeneration, which combine improved sintering behavior with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkali oxide ratio was increased, sodium oxide was partially replaced by potassium oxide and up to 3 mol% calcium fluoride were added, in order to stabilize the glass against crystallization. Sintering and crystallization were characterized by heating microscopy, XRD, FTIR, SEM, and DTA. The results show that a sintered density of 88-99 % is achieved in contrast to only 57-67% for Bioglass® 45S5. Whereas Bioglass® 45S5 powder compacts crystallize during sintering, for the new glasses no crystalline phases were detected. Additionally the influence of grain size was characterized. These studies showed that full densification can be attained for particle size < 32 µm, whereas coarser particles pro-gressively increase residual porosity. Observed foaming phenomena, are strongly retarded by crystallization. T2 - 90. Glastechnische Tagung (Deutsche Glastechnische Gesellschaft e.V.) CY - Goslar, Germany DA - 06.06.2016 KW - Bioactive KW - Glass KW - Crystallization KW - Sintering PY - 2016 AN - OPUS4-38311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Brauer, D. S. T1 - Einfluss der Korngröße auf das Sinterverhalten von bioaktiven Gläsern N2 - Untersuchung des Einflusses des korngrößenabhängigen Kristallisationsverhaltens auf das Sintern von bioaktiven Gläsern mittels Erhitzungsmikroskopie, Röntgendiffraktometrie und Elektronenmikroskopie. T2 - Glashüttentag 2016 CY - Berlin, Germany DA - 29.09.2016 KW - Sintern KW - Glas KW - Bioaktiv KW - Kristallisation KW - Korngröße PY - 2016 AN - OPUS4-38312 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Brauer, D. S. T1 - New bioactive glasses with improved sintering behavior N2 - Nowadays, the use of bioactive glasses is established for bone regeneration; however glasses are used mostly as powders, granules or in a paste. Sintered scaffolds are not used clinically, because of the inherent problem of crystallization during the sintering process, resulting in poor mechanical properties and reduced bioactivity. Therefore it was the aim to design new bioactive glasses, which combine improved processing and sintering with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkali oxide ratio was increased, sodium oxide was partially replaced by potassium oxide and up to 8 mol% calcium fluoride were added, in order to stabilize the glass against crystallization. The sintering behavior of the new glasses was characterized by heating microscopy and compared to that of Bioglass® 45S5. Results show that the new glasses achieve a sintered density of 88-99 % in contrast to only 57-67% for Bioglass® 45S5. In addition, FTIR and XRD analyses show that Bioglass® 45S5 crystallizes during sintering while for the new glasses no crystalline phases were detected. The thermal properties of all glasses were studied by DTA and DSC measurements, and the influence of grain size was characterized. These studies showed an increase of sintering temperature and final porosity with increasing particle size. The structure of sintered compacts during and after sintering was examined using light and electron microscopy (SEM). T2 - SGT Centenary Conference CY - Sheffield, UK DA - 04.09.2016 KW - Bioactive KW - Glass KW - Crystallization KW - Sintering PY - 2016 AN - OPUS4-38314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Brauer, D. S. T1 - Sintering and crystallization of new bioactive glasses N2 - Bioglass® 45S5 is mainly used clinically as powders, granules or pastes instead of sintered compacts. This is due to the inherent problem of crystallization during the sintering, which results in poor mechanical properties and reduced bioactivity. Recently, new bioactive glasses with improved crystallization stability have been developed as promising candidates for manufacturing of sintered powder compacts for bone regeneration, which combine improved sintering behavior with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkali oxide ratio was increased, sodium oxide was partially replaced by potassium oxide and up to 3 mol% calcium fluoride were added, in order to stabilize the glass against crystallization. The aim of this study was to investigate the sintering and crystallization behavior of these new bioactive glasses. Sintering and crystallization were characterized by heating microscopy, XRD, FTIR, SEM, and DTA. The results show that a sintered density of 88-99 % is achieved in contrast to only 57-67% for Bioglass® 45S5. In addition, FTIR and XRD analyses show that Bioglass® 45S5 crystallized during sintering while for the new glasses no crystalline phases are detected. The thermal properties of all glasses were studied by DTA measurements, and the influence of grain size was characterized. These studies showed that full densification can be attained for particle size < 32 µm, whereas coarser particles progressively increase residual porosity. Observed foaming phenomena, are strongly retarded by crystallization of beta-HAp. T2 - SGT Centenary Conference CY - Sheffield, UK DA - 04.09.2016 KW - Bioactive KW - Glass KW - Crystallization KW - Sintering PY - 2016 AN - OPUS4-38317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Master curve for viscous crack healing N2 - A novel method to generalize kinetic data of viscous crack healing in glasses is proposed. The method assumes that crack healing progress is proportional to the healing time, t, and indirect proportional to viscosity, n. This way, crack length and crack width data, normalized to the initial crack length and plotted versus t/n, allow to compare crack healing progress for different cracks and healing temperatures in a master curve. Crack healing experiments conducted in this study demonstrate the applicability of this method for a commercial microscope slide glass. KW - Crack healing KW - Glass KW - Master curve KW - Vickers indentation PY - 2018 U6 - https://doi.org/10.1016/j.matlet.2017.12.082 SN - 0167-577X SN - 1873-4979 VL - 216 SP - 110 EP - 112 PB - Elsevier AN - OPUS4-44300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten T1 - Blähen: Mechanismus, Ursachen und Vermeidung T2 - 4. Glashüttentag der Jungen DGG CY - Freiberg, Deutschland DA - 2015-09-20 PY - 2015 AN - OPUS4-35201 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Groh, D. A1 - Döhler, F. A1 - Brauer, D. S. T1 - New bioactive glasses with improved sintering behavior T2 - Crystallization 2015 CY - Nagaoka, Japan DA - 2015-10-11 PY - 2015 AN - OPUS4-35202 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Effects of microstructure on crack healing in glass matrix composites N2 - Crack healing in glass ceramic solid oxide fuel cell (SOFC) sealants is of utmost importance as cracks caused by thermal cycling remain a bottleneck in developing durable SOFC. Whereas no or low crystal volume fraction seems most favorable for viscous crack healing, it does not for load bearing and undesired diffusion. On the other hand, crystals or filler particles can make the sealant less prone to these disadvantages but it could increase the effective composite viscosity and retard crack healing. Against this background, the influence of crystal volume fraction, phi, on viscous crack healing in glass matrix composites prepared from soda lime silicate glass and zirconia filler particles was studied. Vickers indention induced radial cracks were healed isothermally during interrupted annealing steps and monitored with optical microscopy. Due to the slow crystallization of the glass under study, phi could be kept constant during crack healing. For bulk glass samples (phi = =), the decrease in radial crack length was retarded by an initial increase in crack width due to crack rounding. Up to phi = 0.15 the increase in effective viscosity retarded this crack broadening thereby yielding faster crack healing. For phi > 0.15, crack broadening was progressively suppressed but the same was true for crack healing, which was fully prevented above phi = 0.3. Results indicate that optimum micro structures can prevent crack broadening limited by the global effective composite viscosity and this way promote crack healing limited by local glass viscosity. T2 - 93. Glastechnische Tagung CY - Nürnberg, Germany DA - 12.05.2019 KW - Crack healing KW - Glass matrix composite KW - Vickers indentation PY - 2019 AN - OPUS4-48543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Poologasundarampilai, G. A1 - Brauer, D. S. T1 - Sintering and concomitant crystallization of bioactive glasses N2 - The sintering of bioactive glasses allows for the preparation of complex structures, such as three‐dimensional porous scaffolds. Such 3D constructs are particularly interesting for clinical applications of bioactive glasses in bone regeneration, as the scaffolds can act as a guide for in‐growing bone cells, allowing for good Integration with existing and newly formed tissue while the scaffold slowly degrades. Owing to the pronounced tendency of many bioactive glasses to crystallize upon heat treatment, 3D scaffolds have not been much exploited commercially. Here, we investigate the influence of crystallization on the sintering behavior of several bioactive glasses. In a series of mixed‐alkali glasses an increased CaO/alkali metal oxide Ratio improved sintering compared to Bioglass 45S5, where dense sintering was inhibited. Addition of small amounts of calcium fluoride helped to keep melting and sintering temperatures low. Unlike glass 13‐93, these new glasses crystallized during sintering but this did not prevent densification. Variation in bioactive glass particle size allowed for fine‐tuning the microporosity resulting from the sintering process. KW - Bioactive glass KW - Crystallization KW - Scaffolds KW - Sintering PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-485458 SN - 2041-1286 VL - 10 IS - 4 SP - 449 EP - 462 PB - Wiley AN - OPUS4-48545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Thompson, Cyrus A1 - Müller, Ralf T1 - Crack healing in glasses and glass matrix composites N2 - Fundamental understanding of crack healing in glassy crystalline materials is very important for solid oxide fuel cell (SOFC) sealants, since cracks caused by sealing or thermal cycling still remain a substantial bottleneck in developing durable SOFC. Previous studies on soda lime silicate glass [Sin14] showed that crack healing is driven by viscous flow and that healing progress is proportional to time t and inverse viscosity η. This finding would allow to present healing data of a given glass for different temperatures in a master curve healing progress versus t/η. Such master curves would be a helpful tool in understanding crack healing kinetics. Against this background, crack healing in non-crystallizing sodium calcium silicate (NCS) and sodium borosilicate glasses (NBS) have been studied. Moreover, to evaluate the influence of micro structure in crystallized glass on crack healing process, glass matrix composites (GMC) were prepared from NCS and zirconia as inert ceramic filler material mimicking a partially crystalline micro structure. By this way, the micro structure can be kept constant during crack healing. Cracks were generated by Vickers indention and healed isothermally at different temperatures. Crack healing progress was monitored by optical and electron microscopy. Results show that the above mentioned proportionality actually applies for the studied glasses for which such a master curve could be obtained. In comparison to a non-crystallized glass, the effective viscosity of GMC is increased by the rigid filler content. This effect substantially retards crack broadening during later healing stages, which often ends up in large pores. On the other hand, local viscous crack healing is still possible in larger glassy regions. This behavior seems to be very interesting for crack healing optimized micro structures. T2 - Crystallization 2017 CY - Segovia, Spain DA - 10.09.2017 KW - Glass KW - Glass ceramic KW - Crack healing KW - Microstructure PY - 2017 AN - OPUS4-42285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Thompson, Cyrus A1 - Müller, Ralf T1 - Crack healing in glass matrix composites N2 - Partially crystalline glasses are predominantly used as solid oxide fuel cell (SOFC) sealants due to their superior long term durability. However, cracks caused by thermal cycling still remain a substantial bottleneck in developing durable SOFC sealants inasmuch as, in contrast to crystal free glasses, large crystal volume fractions can retard healing. Hence, the basic understanding of crack healing in glassy crystalline materials and the effects of micro structure are important for finding optimum micro structures for both, durability and crack healing. For studying these effects, several model glass matrix composites (GMC), for which simultaneous crystal growth and crack healing can be excluded, have been synthesized. Sodium calcium silicate glass – zirconia GMC turned out to provide sufficiently homogeneous, dense and durable model GMC for our studies. The microstructure of this GMC shows large crystal free glassy regions embedded in network of finely dispersed ZrO2 nanoscale crystals. Whereas the glassy regions allow easy local crack healing, the network of dispersed crystals increases the effective viscosity on a global scale. This effect substantially retards crack broadening during later healing stages, which often ends up in large pores. Therefore, this type of microstructure seems to be an interesting candidate for crack healing optimized sealants. T2 - Crystallization 2017 CY - Segovia, Spain DA - 10.09.2017 KW - Glass KW - Glass ceramic KW - Crack healing KW - Microstructure PY - 2017 AN - OPUS4-42291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Thompson, Cyrus A1 - Müller, Ralf T1 - Master curve for crack healing in silicate glasses N2 - Fundamental understanding of crack healing in glassy crystalline materials is very important for many applications, especially for solid oxide fuel cells (SOFC) sealants since cracks caused by mechanical stress or thermal cycling still remain a substantial bottleneck in developing durable SOFC. Previous studies on soda lime silicate glass published by Singh showed that crack healing is driven by viscous flow. He postulated that the healing progress is proportional to time, t, and the inverse viscosity. For a given glass, this finding would allow to present data of crack healing measured at different temperatures in a master curve, if the healing progress is plotted versus t/. Such master curves would be a helpful tool in understanding crack healing kinetics. To verify the applicability of such master curves, crack healing in non-crystallizing soda-lime-silicate (NCS) and sodium-borosilicate glasses (NBS) was studied. Cracks were generated by Vickers indention and healed isothermally at different temperatures. Crack healing progress was monitored by optical and electron microscopy. The results show that the above mentioned proportionality applies to the two glasses and the afore developed master curve could be obtained in both cases. T2 - Crystallization 2017 CY - Segovia, Spain DA - 10.09.2017 KW - Glass KW - Crack healing KW - Vickers PY - 2017 AN - OPUS4-42293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Thompson, Cyrus T1 - Crack healing in glasses N2 - Fundamental understanding of crack healing in glassy crystalline materials is very important for many applications, especially for solid oxide fuel cells (SOFC) sealants since cracks caused by mechanical stress or thermal cycling still remain a substantial bottleneck in developing durable SOFC. Previous studies on soda lime silicate glass published by Singh showed that crack healing is driven by viscous flow. There he postulated that the healing progress is proportional to time, t, and the inverse viscosity. This finding would allow to present for a given glass data of crack healing measured at different temperatures in a master curve, if the healing progress is plotted versus t/η. Such master curves would be a helpful tool in understanding crack healing kinetics. To verify the applicability of such master curves, crack healing in non-crystallizing soda-lime-silicate (NCS) and sodium-borosilicate glasses (NBS) was studied. Cracks were generated by Vickers indention and healed isothermally at different temperatures. Crack healing progress was monitored by optical and electron microscopy. The results show that the above mentioned proportionalities applies to the two glasses. In both cases the afore developed master curve could be obtained. T2 - 91. Jahrestagung HVG-DGG CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Crack healing PY - 2017 AN - OPUS4-41347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Thompson, Cyrus T1 - Crack healing in glass matrix composites N2 - Partially crystalline glasses are predominantly used as solid oxide fuel cell (SOFC) sealants due to their superior long term durability. However, cracks caused by thermal cycling still remain a substantial bottleneck in developing durable SOFC sealants inasmuch as, in contrast to crystal free glasses, large crystal volume fractions can retard healing. Hence, the basic understanding of crack healing in glassy crystalline materials and the effects of micro structure are important for finding optimum micro structures for both, durability and crack healing. For studying these effects, several model glass matrix composites (GMC), for which simultaneous crystal growth and crack healing can be excluded, have been synthesized. Sodium calcium silicate glass – zirconia GMC turned out to provide sufficiently homogeneous, dense and durable model GMC for our studies. The microstructure of this GMC shows large crystal free glassy regions embedded in network of finely dispersed ZrO2 nanoscale crystals. Whereas the glassy regions allow easy local crack healing, the network of dispersed crystals increases the effective viscosity on a global scale. This effect substantially retards crack broadening during later healing stages, which often ends up in large pores. Therefore, this type of microstructure seems to be an interesting candidate for crack healing optimized sealants. T2 - 91. Jahrestagung HVG-DGG CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Crack healing KW - Glass ceramic KW - Composite PY - 2017 AN - OPUS4-41348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Thompson, Cyrus T1 - Crack healing in glasses and glass matrix composites N2 - Fundamental understanding of crack healing in glassy crystalline materials is very important for many applications, especially for sealing solid oxide fuel cells (SOFC) since cracks caused by sealing or thermal cycling still remain a substantial bottleneck in developing durable SOFC. Previous studies on soda lime silicate glass [Sin14] showed that crack healing is driven by viscous flow and that healing progress is proportional to time t and inverse viscosity η. This finding would allow to present healing data of a given glass for different temperatures in a master curve healing progress versus t/η. Such master curves would be a helpful tool in understanding crack healing kinetics. Against this background, crack healing in non-crystallizing sodium calcium silicate (NCS) and sodium borosilicate glasses (NBS) have been studied. Moreover, to evaluate the influence of micros structure in crystallized glass on crack healing process, glass matrix composites (GMC) where prepared out of NCS and zirconia as inert ceramic filler material mimicking a partially crystalline micro structure. Cracks were generated by Vickers indention and healed isothermally at different temperatures. Crack healing progress was monitored by optical and electron microscopy. Results show that the above mentioned proportionality actually applies for the studied glasses for which such a master curve could be obtained. In comparison to a non-crystallized glass, the effective viscosity of GMC is increased by rigid filler content. This effect substantially retards crack broadening during later healing stages, which often ends up in large pores. On the other hand, local viscous crack healing is still possible in larger glassy regions. This behavior seems to be very interesting for crack healing optimized sealants. T2 - 91. Jahrestagung HVG-DGG CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Crack healing KW - Glass ceramic KW - Composite PY - 2017 AN - OPUS4-41351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous healing of Vickers indentation–induced cracks in glass N2 - AbstractViscous healing of cracks induced by the Vickers indentation in a soda lime magnesium silicate, a soda borosilicate, and a soda aluminosilicate glass (NAS) was studied by laser scanning microscopy. Plots of the crack length, width, and depth normalized to the initial crack length versus time over viscosity merge into single master curves of each of these quantities for each glass. Despite glass properties do not differ strikingly from each other, however, these master curves strongly differ among the glasses. This finding was attributed to a different interplay of various crack healing phenomena. Lateral cracks were found to be responsible for the bulging of the sample surface around the Vickers imprint, which in turn promotes radial crack widening as the main cause of healing delay. The most rapid healing of lateral cracks was observed in NAS in which bulging and crack widening were least pronounced. KW - Crack healing KW - Glass KW - Vickers indentation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587295 SN - 0002-7820 VL - 106 IS - 10 SP - 5795 EP - 5805 PB - Wiley AN - OPUS4-58729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Boccaccini, A. R. T1 - Sintering and crystallization kinetics of bioactive glass 13-93 N2 - This study investigates the sintering and crystallization behavior and kinetic of the bioactive glass (BG) 13–93 with nominal composition (in mol%): 54.6 SiO2 - 1.7 P2O3 - 22.1 CaO - 6.0 Na2O - 7.9 K2O - 7.7 MgO. Sintering and crystallization were investigated non-isothermally for various particle size fractions smaller than 315 μm as well as for bulk samples. Densification was not hindered by the presence of crystalline phases across all particle size fractions. Afterwards, wollastonite was found as the dominant crystal phase at higher temperature which resorb primary surface precipitation-like quartz crystallites. The growth direction shifts into volume when the sample surface is nearly covered. The crystal growth rate of wollastonite was calculated from the crystalline surface layer thickness measured during heating. The findings of this study are relevant for the high temperature processing of BG 13–93. KW - Bioactive glass KW - Sintering KW - Crystallization PY - 2024 U6 - https://doi.org/10.1016/j.jnoncrysol.2023.122790 SN - 0022-3093 VL - 627 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-59337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -