TY - JOUR A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Biyikal, Mustafa A1 - Hecht, Mandy A1 - Rurack, Knut T1 - Mimicking tricks from nature with sensory organic-inorganic hybrid materials N2 - Design strategies for (bio)chemical systems that are inspired by nature's accomplishments in system design and operation on various levels of complexity are increasingly gaining in importance. Within the broad field of biomimetic chemistry, this article highlights various attempts toward improved and sophisticated sensory materials that rely on the combination of supramolecular (bio)chemical recognition principles and nanoscopic solid structures. Examples range from more established concepts such as hybrid sensing ensembles with improved sensitivity and selectivity or for target analytes for which selectivity is hard to achieve by conventional methods, which were often inspired by protein binding pockets or ion channels in membranes, to very recent approaches relying on target-gated amplified signalling with functionalised mesoporous inorganic supports and the integration of native biological sensory species such as transmembrane proteins in spherically supported bilayer membranes. Besides obvious mimicry of recognition-based processes, selected approaches toward chemical transduction junctions utilizing artificially organized synapses, hybrid ensembles for improved antibody generation and uniquely colour changing systems are discussed. All of these strategies open up exciting new prospects for the development of sensing concepts and sensory devices at the interface of nanotechnology, smart materials and supramolecular (bio)chemistry. KW - Sensorik KW - Supramolekulare Chemie KW - Biomimetik KW - Nanotechnologie KW - Hybridmaterialien PY - 2011 U6 - https://doi.org/10.1039/c1jm11210d SN - 0959-9428 SN - 1364-5501 VL - 21 IS - 34 SP - 12588 EP - 12604 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-24352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -