TY - JOUR A1 - Bilsel, M. A1 - Gökçen, T. A1 - Binici, B. A1 - Isleyen, A. A1 - Piechotta, Christian A1 - Kar-wai, A. A1 - Krylov, A. A1 - Miheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - chenko, Irina Tka A1 - Perkola, N. A1 - Lewin, M. A1 - Hua, T. T1 - High polarity analyte(s) in aqueous media: determination of L-PFOA and L-PFOS in ground water N2 - The CCQM-K156 comparison was coordinated by TUBITAK UME on behalf of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) for National Measurement Institutes (NMIs) and Designated Institutes (DIs) which provide measurement services in organic analysis under the 'Comité International des Poids et Mesures' Mutual Recognition Arrangement (CIPM MRA). Perfluoro alkyl substances (PFAS) such as PFOS and PFOA have been used in numerous industrial applications and products. Because of their high stability and resistance to biodegradation, atmospheric photooxidation, direct photolysis and hydrolysis, they are extremely persistent in the environment. The European Union (EU) Water Framework Directive lists PFOS as a priority hazardous substance that poses a significant risk to the aquatic environment. The use of PFOS-containing Aqueous Film-Forming Foams (AFFFs) has been banned since June 2011 in the EU. As relatively water-soluble, effectively non-degradable compounds, PFOS and PFOA migrate to ground water. They are not removed in the conventional drinking water treatment, and therefore cause health risks in polluted areas. The EU Drinking Water Directive and the European Commission has proposed a limit value of 100 ng/L for the sum of 20 PFAS, including PFOS and PFOA. This study provides the means for assessing measurement capabilities for determination of high polarity measurands in a procedure that requires extraction, clean-up, analytical separation and detection. Successful participation in CCQM-K156 demonstrates measurement capabilities in determining mass fraction of organic compounds, with a molecular mass of 200 g/mol to 700 g/mol, having high polarity pKow -2, in a mass fraction range from 0.5 ng/kg to 500 ng/kg in aqueous media. Nine NMIs and DIs participated in the CCQM-K156 key comparison. Seven institutes reported their results. SPE was applied in the sample pre-treatment and LC-MS was applied for detection. All participating laboratories applied isotope dilution mass spectrometry (IDMS) techniques for quantification. Participants established the metrological traceability of their results using certified reference materials (CRMs) from NMIs with stated traceability; where commercially available high purity materials were used the purity was determined in-house. The CCQM-K156 results for L-PFOA and L-PFOS range from 2.75 ng/kg to 5.50 ng/kg with a % RSD of 19.5 % for L-PFOA and from 2.04 ng/kg to 4.45 ng/kg with a % RSD of 21.3 % for L-PFOS. The KCRV was assigned using a Hierarchical Bayesian Random Effects Model (HB REM) estimator from the values reported by six of the participants. One participant result of L-PFOS and one result of L-PFOA were excluded from the KCRV for technical reasons. The KCRV was 4.9 ng/kg ± 0.4 ng/kg for L-PFOA and 3.8 ng/kg ± 0.4 ng/kg for L-PFOS. The six institutes that were included in the assignment of consensus KCRV all agreed within their standard uncertainties. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - PFAS KW - Surface water KW - ILC KW - CCQM PY - 2022 U6 - https://doi.org/10.1088/0026-1394/59/1A/08016 VL - 59 IS - 1A SP - 1 EP - 3 PB - IOP Publishing AN - OPUS4-58941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ricci, M. A1 - Shegunova, P. A1 - Conneely, P. A1 - Becker, Roland A1 - Torres, M. M. A1 - Osuna, M. A. A1 - On, T.P. A1 - Man, L.H. A1 - Baek, S.-Y. A1 - Kim, B. A1 - Hopley, C. A1 - Liscio, C. A1 - Warren, J. A1 - Le Diouron, V. A1 - Lardy-Fontan, S. A1 - Lalere, B. A1 - Mingwu, S. A1 - Kucklick, J. A1 - Vamathevan, V. A1 - Matsuyama, S. A1 - Numata, M. A1 - Brits, M. A1 - Quinn, L. A1 - Fernandes-Whaley, M. A1 - Gören, A.C. A1 - Binici, B. A1 - Konopelko, L. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K102: Polybrominated diphenyl ethers in sediment N2 - The key comparison CCQM-K102: Polybrominated diphenyl ethers in sediment was coordinated by the JRC, Directorate F - Health, Consumers & Reference Materials, Geel (Belgium) under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM). Thirteen National Metrology institutes or Designated Institutes and the JRC participated. Participants were requested to report the mass fraction (on a dry mass basis) of BDE 47, 99 and 153 in the freshwater sediment study material. The sediment originated from a river in Belgium and contained PBDEs (and other pollutants) at levels commonly found in environmental samples. The comparison was designed to demonstrate participants' capability of analysing non-polar organic molecules in abiotic dried matrices (approximate range of molecular weights: 100 to 800 g/mol, polarity corresponding to pKow < −2, range of mass fraction: 1–1000 μg/kg). All participants (except one using ultrasonic extraction) applied Pressurised Liquid Extraction or Soxhlet, while the instrumental analysis was performed with GC-MS/MS, GC-MS or GC-HRMS. Isotope Dilution Mass Spectrometry approach was used for quantification (except in one case). The assigned Key Comparison Reference Values (KCRVs) were the medians of thirteen results for BDE 47 and eleven results for BDE 99 and 153, respectively. BDE 47 was assigned a KCRV of 15.60 μg/kg with a combined standard uncertainty of 0.41 μg/kg, BDE 99 was assigned a KCRV of 33.69 μg/kg with a combined standard uncertainty of 0.81 μg/kg and BDE 153 was assigned a KCRV of 6.28 μg/kg with a combined standard uncertainty of 0.28 μg/kg. The k-factor for the estimation of the expanded uncertainty of the KCRVs was chosen as k = 2. KW - Intercomparison KW - Traceability KW - Nation metrology institutes PY - 2017 U6 - https://doi.org/10.1088/0026-1394/54/1A/08026 SN - 0026-1394 SN - 1681-7575 VL - 54 SP - 08026, 1 EP - 82 AN - OPUS4-41998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Janine A1 - Elordui-Zapatarietxe, S. A1 - Emteborg, H. A1 - Fettig, Ina A1 - Cabillic, J. A1 - Alasonati, E. A1 - Gantois, F. A1 - Swart, C. A1 - Gokcen, T. A1 - Tunc, M. A1 - Binici, B. A1 - Rodriguez-Cea, A. A1 - Zuliani, T. A1 - Gonzalez Gago, A. A1 - Pröfrock, D. A1 - Nousiainen, M. A1 - Sawal, G. A1 - Buzoianu, M. A1 - Philipp, Rosemarie T1 - An interlaboratory comparison on whole water samples N2 - The European Water Framework Directive 2000/60/EC requires monitoring of organic priority pollutants in so-called whole water samples, i.e. in aqueous nonfiltered samples that contain natural colloidal and suspended particulate matter. Colloids and suspended particles in the liquid phase constitute a challenge for sample homogeneity and stability. Within the joint research project ENV08 ‘‘Traceable measurements for monitoring critical pollutants under the European Water Framework Directive 2000/60/EC’’, whole water test materials were developed by spiking defined amounts of aqueous slurries of ultrafinely milled contaminated soil or sediment and aqueous solutions of humic acid into a natural mineral water matrix. This paper presents the results of an European-wide interlaboratory comparison (ILC) using this type of test materials. Target analytes were tributyltin, polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons in the ng/L concentration range. Results of the ILC indicate that the produced materials are sufficiently homogeneous and stable to serve as samples for, e.g. proficiency testing or method validation. To our knowledge, this is the first time that ready-to-use water materials with a defined amount of suspended particulate and colloidal matter have been applied as test samples in an interlaboratory exercise. These samples meet the requirements of the European Water Framework Directive. Previous proficiency testing schemes mainly employed filtered water samples fortified with a spike of the target analyte in a water-miscible organic solvent. KW - Water Framework Directive KW - Wasserrahmenrichtlinie KW - Interlaboratory comparison KW - Ringversuch KW - Whole water sample KW - Gesamtwasserprobe PY - 2016 U6 - https://doi.org/10.1007/s00769-015-1190-8 SN - 0949-1775 SN - 1432-0517 VL - 21 IS - 2 SP - 121 EP - 129 PB - Springer AN - OPUS4-35730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -