TY - JOUR A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Airborne laser-spark for ambient desorption/ionisation N2 - A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. N2 - Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die Desorption als auch die Ionisation erfolgen hierbei durch ein laserbetriebenes Luftplasma. Die Abwesenheit fester oder flüssiger Elektroden hat zur Folge, dass die Methode weder unter chemischen Interferenzen noch unter Verschleiß durch Korrosionsbrand oder abgetragenes Elektrodenmaterial leidet. Insgesamt betrachtet herrscht in dem Plasma Elektroneutralität, wodurch Aufladungseffekte minimiert werden, die andernfalls zu einer langfristigenÄderung der Flugbahnen von Ionen während der Experimente führen kann. In dem Ansatz eine freischwebende Luftentladung bei Atmosphärendruck zu verwenden agiert die Luft nicht nur als Plasmamedium sondert dient zusätzlich als Badgas für die stoßinduzierte Kühlung der entstehenden Ionen. Die Ionisierung der Analytmoleküle erfolgt nicht unmittelbar im Plasma sondern in dessen direkter Umgebung durch Wechselwirkung mit freigesetzten ionischen Luftspezies, freien Elektronen oder Photonen im kurzwelligen ultravioletten Bereich. Jede Laserentladung erzeugt eine hörbare Stoßwelle, in welcher neu produzierte reaktive Spezies freigesetzt werden, welche sich konzentrisch ausbreiten, so dass eine Diffusion der Analytmoleküle ins heiße Innere des Plasmas verhindert wird. Daraus folgt, dass im Interaktionsvolumen zwischen Plasma und Analyt der Temperaturgrenzwert für eine thermische Dissoziation oder Fragmentierung der Moleküle nicht überschritten wird. Experimentell konnte belegt werden, dass das vorgestellte Ionisierungsschema sehr unselektiv bezüglich der chemischen Analytklasse ist und kaum Fragmentierungsprodukte beobachtet werden können. Messungen einer breitgefächerten Auswahl unterschiedlicher Testsubstanzen, wie beispielsweise polarer und unpolarer Kohlenwasserstoffe, Zuckern, niedermolekularer pharmazeutischer Wirkstoffe, sowie natürlicher Biomoleküle in Lebensmittelproben unmittelbar aus ihren komplexen Matrizes, führten zu aussagekräftigen Massenspektren. Zumal das Lasermedium feuchte Luft ist, scheint der Reaktionsmechanismus dem anderer Atmosphärendruckionisierungsmethoden zuähneln. KW - Laser-spark KW - Laser-induced plasma KW - DPSS laser KW - High repetition rate KW - Ambient mass spectrometry KW - Time-of-flight mass spectrometry KW - Ionisation PY - 2016 U6 - https://doi.org/10.1255/ejms.1417 SN - 1469-0667 VL - 22 IS - 3 SP - 105 EP - 114 PB - IM Publications LLP CY - Chichester, UK AN - OPUS4-37286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stindt, Arne A1 - Warschat, Carsten A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Characterisation of an inexpensive sonic spray ionisation source using laser induced fluorescence imaging and mass spectrometry N2 - A commercially available airbrush gun as a new source for spray ionization is presented. It is best operated employing moderate stagnation pressures, resulting in a sonic gas flow. A mass spectrometric investigation on the amino acid lysine and several peptides reveals that this inexpensive approach results in reproducible mass spectra. The ion patterns strongly resemble the results from other studies obtained with custom made sonic spray vaporizers. The patterns as well resemble the mass spectra recorded with electrospray devices. For a better understanding of the vaporization process, the mass spectrometry experiments are accompanied by laser induced fluorescence experiments. Inverse Abel transform of the obtained fluorescence maps allows the determination of the full 3D distribution of the spray cone. Furthermore, via exploitation of the solvatochromism of the used dye the solvation state distribution can be visualized. In addition, expansion parameters like droplet size and velocity are obtained by laser stroboscopy. The experiments demonstrate that the analyte is hardly desolvated throughout the expansion. This indicates a subsequent vaporization of the residual solvent in the intermediate pressure region of the mass spectrometer. KW - Sonic spray ionization KW - Mass spectrometry KW - Solvatochromism KW - Inverse Abel Transform KW - Sonic spray KW - Airbrush KW - Laser induced fluorescence PY - 2014 U6 - https://doi.org/10.1255/ejms.1242 SN - 1469-0667 SN - 1356-1049 SN - 1365-0718 VL - 20 IS - 1 SP - 21 EP - 29 PB - IM Publications CY - Chichester AN - OPUS4-30403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Kersten, H. A1 - Glaus, Reto A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Characterization of an airborne laser-spark ion source for ambient mass spectrometry N2 - An airborne laser plasma is suggested as an ambient ion source for mass spectrometry. Its fundamental physical properties, such as an excellent spatial and temporal definition, high electron and ion densities and a high effective cross section in maintaining the plasma, make it a promising candidate for future applications. For deeper insights into the plasma properties, the optical plasma emission is examined and compared to mass spectra. The results show a seemingly contradictory behavior, since the emitted light reports the plasma to almost entirely consist of hot elemental ions, while the corresponding mass spectra exhibit the formation of intact molecular species. Further experiments, including time- resolved shadowgraphy, spatially resolved mass spectrometry, as well as flow-dependent emission spectroscopy and mass spectrometry, suggest the analyte molecules to be formed in the cold plasma vicinity upon interaction with reactive species formed inside the hot plasma center. Spatial separation is maintained by concentrically expanding pressure waves, inducing a strong unidirectional diffusion. The accompanying rarefaction inside the plasma center can be compensated by a gas stream application. This replenishing results in a strong increase in emission brightness, in local reactive species concentration, and eventually in direct mass spectrometric sensitivity. To determine the analytical performance of the new technique, a comparison with an atmospheric pressure chemical ionization (APCI) source was conducted. Two kitchen herbs, namely, spearmint and basil, were analyzed without any sample pretreatment. The presented results demonstrate a considerably higher sensitivity of the presented laser-spark ionization technique. KW - Laser-spark KW - Laser induced plasma KW - Ambient mass spectrometry KW - Optical emission spectroscopy KW - Ionization PY - 2017 U6 - https://doi.org/10.1021/acs.analchem.6b04178 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 6 SP - 3437 EP - 3444 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-39474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Rurack, Knut A1 - Riedel, Jens T1 - Characterization of two modes in a dielectric barrier discharge probe by optical emission spectroscopy and time-of-flight-mass spectrometry N2 - Among the large number of new ambient ionization schemes in the last few years, dielectric barrier discharge (DBD) has witnessed special attention. In this contribution a versatile dual mode DBD is introduced and characterized by means of optical emission spectroscopy and time-of-flight mass spectrometry. A direct comparison of the individual results from spectroscopy, spectrometry and transient current/voltage consumption gives evidence for the existence of two individual operational mechanisms. The first is driven by rapid transient changes in the potential difference between the two electrodes over time (usually denoted as the homogeneous mode), while the second is caused at high static potential differences (leading to filamentary discharges). The transient versus steady-state characteristics of the individual discharge origin suggest the driving force for the current flow to be inductive and capacitive, respectively. In most cases of dielectric barrier plasmas both discharge types coexist as competitive ion formation channels, however, detailed plasma characteristics of DBDs operated under different conditions allow for a clear distinction of the individual contributions. In this way, two characteristic product channels for the ionization of ambient water could be observed resulting in the generation of either preferentially protonated water clusters or ammonium water clusters. Careful tuning of the operation parameters of the discharge device allows an operation predominated by either of the two modes. As a consequence, facile switching into the desired operational mode results in either protonated molecules or ammoniated molecules of the analyte. Plasma characteristics for both moieties were evaluated and cross-correlated on the basis of several factors including: the production of reagent ions, the individual appearance of current/voltage profiles, UV/Vis spectroscopy, voltage and flux dependence and the individual response to test compounds. Although the filamentary mode has been already discussed in the literature to induce fragmentation processes, no experimental evidence for analyte dissociation could be found in the case of the test compounds used KW - Dual mode KW - Dielectric barrier discharge KW - Ambient desorption/ionization mass spectrometry KW - Emission spectroscopy KW - Ionization PY - 2015 U6 - https://doi.org/10.1039/C5JA00332F SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 12 SP - 2496 EP - 2506 PB - Royal Society of Chemistry CY - London AN - OPUS4-35092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Charactization of a versatile low temperature plasma torch by optical emission spectroscopy and time-of-flight mass spectrometry T2 - DGMS 2015 CY - Wuppertal, Deutschland DA - 2015-03-01 PY - 2015 AN - OPUS4-33639 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - Riedel, Jens A1 - Panne, Ulrich T1 - Combination of laser spectroscopy and laser ablation mass spectrometry T2 - IMSC 2014 CY - Geneva, Schweiz DA - 2014-08-24 PY - 2014 AN - OPUS4-31847 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Combination of Raman spectroscopy and laser ablation mass spectrometry T2 - Doktorandenseminar des DAAS -Spektroskopie und Spurenanalytik 2014 CY - Münster, Germany DA - 2014-09-22 PY - 2014 AN - OPUS4-33641 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Confinement and enhancement of an airborne atmospheric laser-induced plasma using an ultrasonic acoustic resonator N2 - Optical elemental analysis in the gas phase typically relies on electrically driven plasmas. As an alternative approach, laser-induced plasmas (LIPs) have been suggested but have so far been only scarcely used. Here, a novel signal enhancement strategy for laser-based airborne plasma optical Emission spectroscopy for gas phase analytics is presented. In contrast to an electrically driven plasma, in the laser-induced analogue dynamic matter transport equilibrium builds up. The latter results in a rarefied density regime in the plasma core itself, surrounded by an area of compressed matter. The central rarefaction leads to a decrease in plasma intensity and analyte number density, both of which are detrimental for analytical purposes. Since the repetitive ignition of LIPs is a transient process, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favourable. The presented combination of an airborne LIP and an ultrasonic acoustic resonator yields a fourfold signal enhancement while the Background contribution of ubiquitous air is at the same time effectively suppressed. Since the entire enhancement effect occurs without contact, no additional sources for abrasive sample contamination are introduced. KW - DPSS laser KW - Laser-induced plasma KW - High repetition rate KW - Ultrasonic acoustic resonator KW - Optical emission spectroscopy PY - 2018 U6 - https://doi.org/10.1039/C7JA00297A SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 135 EP - 140 PB - Royal Society of Chemistry CY - London AN - OPUS4-43619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - Bräkling, S. A1 - Rieger, J. A1 - Kersten, H. A1 - Glaus, Reto A1 - Gornushkin, Igor B. A1 - Riedel, Jens T1 - Development and characterization of an airborne laser-spark ion source for ambient desorption / ionization mass spectrometry N2 - A novel direct sampling ionization scheme for ambient mass spectrometry is presented. Desorption and ionization is achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. A laser plasma was ignited under ambient conditions in front of a modified TOF MS atmospheric pressure interface, using a high repetition rate DPSS laser operating at 532 nm and 26 kHz and an aspherical lens with a focal length of 8 mm. Emission spectroscopy (40-1100 nm) and time resolved studies on specific plasma parameters revealed insight into the physical and chemical plasma properties. Plasma ignition can be performed in rare gases and under ambient conditions. The hot plasma zone was kept at a certain distance from the sample region. Thus, effective collisional cooling seemed to prevent thermal fragmentation. Every single spark generates a shockwave, providing new reactive species, which expands concentrically from the hot region. Under ambient conditions primary charge carriers (ions and electrons) as well as VUV radiation initialize reaction cascades equivalent to other ambient ionization methods, such as DART or DBD. Mass spectra of polar/nonpolar hydrocarbons, sugars, pharmaceuticals and natural biomolecules in food were observed. Comprehensive emission spectroscopic measurements and time resolved electron current studies revealed insight into some plasma properties, such as the emitted high energetic radiation and the time evolution of the expanding plume. T2 - International Mass Spectrometry Conference 2016 CY - Toronto, ON, Canada DA - 20.08.2016 KW - laser-spark KW - laser-induced plasma KW - ambient mass spectrometry KW - emission spectroscopy PY - 2016 AN - OPUS4-37281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - Kersten, H. A1 - Glaus, Reto A1 - Gornushkin, Igor B. A1 - Riedel, Jens T1 - Development of a laser induced plasma ion source coupled to ambient mass spectrometry N2 - Only a few years after the invention of the laser, the concept of laser microprobe mass spectrometry (LMMS), a technique which employed intense laser radiation for ion generation, was introduced. In these early studies at excessive irradiation microplasma formation could be observed to be an effective channel for ion formation. However, this plasma generation in vacuum led to undesired distortions of the mass analyzers and, thus, was discarded as an analytical ion source. Under ambient conditions, the surrounding air effectively cools the plasma cloud, making the plasma more controllable. The resulting laser induced plasma is nowadays commonly used in laser induced breakdown spectroscopy (LIBS) applications as excitation source for optical emission spectroscopy experiments. However, little effort has been made to introduce a LIBS plasma as a promising ion source for ambient mass spectrometry. The main hindrance is the transient character of laser induced plasmas that typically only has a lifetime on the order of several microseconds. This drastically reduces the duty cycle of these plasma sources. After these microseconds, the generated ions recombinate to uncharged atoms and even newly bound molecules, making them inaccessible to mass-to-charge analyzers. The advent of high repetition lasers together with the ever growing knowledge about manipulation of charged species at atmospheric pressures allow overcoming these obstacles. This presentation will introduce an ionization scheme using a laser induced plasma as the primary ion source. We believe that this novel ionization strategy will pave the way for future applications in ambient mass spectrometry. T2 - 5. Berliner Chemie Symposium CY - Berlin, Germany DA - 12.04.2016 KW - Laser induced plasma KW - Time-of-flight mass spectrometry KW - Ambient mass spectrometry KW - Ionization KW - Laser induziertes Plasma KW - Flugzeitmassenspektrometer KW - Atmosphärendruckmassenspektrometrie KW - Ionisierung PY - 2016 AN - OPUS4-35732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -