TY - CONF A1 - Bierstedt, Andreas T1 - Development of a laser induced plasma ion source coupled to ambient mass spectrometry N2 - Only a few years after the invention of the laser, the concept of laser microprobe mass spectrometry (LMMS), a technique which employed intense laser radiation for ion generation, was introduced. In these early studies at excessive irradiation microplasma formation could be observed to be an effective channel for ion formation. However, this plasma generation in vacuum led to undesired distortions of the mass analyzers and, thus, was discarded as an analytical ion source. Under ambient conditions, the surrounding air effectively cools the plasma cloud, making the plasma more controllable. The resulting laser induced plasma is nowadays commonly used in laser induced breakdown spectroscopy (LIBS) applications as excitation source for optical emission spectroscopy experiments. However, little effort has been made to introduce a LIBS plasma as a promising ion source for ambient mass spectrometry. The main hindrance is the transient character of laser induced plasmas that typically only has a lifetime on the order of several microseconds. This drastically reduces the duty cycle of these plasma sources. After these microseconds, the generated ions recombinate to uncharged atoms and even newly bound molecules, making them inaccessible to mass-to-charge analyzers. The advent of high repetition lasers together with the ever growing knowledge about manipulation of charged species at atmospheric pressures allow overcoming these obstacles. This presentation will introduce an ionization scheme using a laser induced plasma as the primary ion source. We believe that this novel ionization strategy will pave the way for future applications in ambient mass spectrometry. T2 - 5. Berliner Chemie Symposium CY - Berlin, Germany DA - 12.04.2016 KW - Laser induced plasma KW - Time-of-flight mass spectrometry KW - Ambient mass spectrometry KW - Ionization KW - Laser induziertes Plasma KW - Flugzeitmassenspektrometer KW - Atmosphärendruckmassenspektrometrie KW - Ionisierung PY - 2016 AN - OPUS4-35732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas T1 - Laser induced plasma ion source for ambient mass spectrometry N2 - Laser microprobe mass analysis (LMMS) employs local ionization by a focused laser and subsequent mass analysis. At excessive irradiation microplasmas led to undesired distortions. Thus, LMMS was discarded as promising ion source. Effective cooling under ambient conditions resulted in more controllable plasmas and development of laser induced breakdown spectroscopy (LIBS). However, little effort has been made to combine LIBS and ambient MS, since these plasmas only provide microsecond lifetimes. After these, recombination yields uncharged and newly bound species, making them inaccessible for MS. The combination of high repetition rate lasers together with growing knowledge about manipulation of charged species at atmospheric pressure allow overcoming these obstacles. T2 - 49. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie (DGMS) CY - Hamburg, Germany DA - 28.02.2016 KW - laser induced plasma KW - ion source KW - ambient mass spectrometry KW - emission spectroscopy KW - laser induziertes Plasma KW - Ionenquelle KW - Atmosphärendruck-Massenspektrometrie KW - Emissionsspektroskopie PY - 2016 AN - OPUS4-35454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas T1 - Combination of Raman spectroscopy and laser ablation mass spectrometry T2 - Doktorandenseminar des DAAS -Spektroskopie und Spurenanalytik 2014 CY - Münster, Germany DA - 2014-09-22 PY - 2014 AN - OPUS4-33641 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - High-repetition rate laser ablation coupled to dielectric barrier discharge postionization for ambient mass spectrometry N2 - Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The Approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective Ablation was achieved by the second harmonic output (λ = 532 nm) of a diode pumped Nd:YVO₄ laser operating at a high-repetition rate of several kHz and pulse energies below 100 μJ. The ejected analytecontaining aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited Helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids L-arginine, L-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded. KW - Laser ablation KW - High-repetition rate laser KW - Dielectric barrier discharge KW - Ambient mass spectrometry PY - 2016 DO - https://doi.org/10.1016/j.ymeth.2016.02.002 SN - 1046-2023 IS - 104 SP - 3 EP - 10 PB - Elsevier CY - Oxford AN - OPUS4-36730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas T1 - Laser-spark ionization mass spectrometry N2 - A versatile ionization scheme for atmospheric pressure MS is presented. It is based on a quasi-continuous laser-induced plasma (LIP), generated by a 26 kHz pulsed DPSS-laser, which is ignited in front of the MS inlet. Analytes are determined with different sampling regimes, comprising either an ambient desorption/ionization mechanism, a liquid-phase or gas-phase sample introduction. The MS signal closely resembles the ionization behavior of APCI-like plasma-based sources, such as DBD or DART. Though LIPs are known to efficiently atomize/ionize any sample material, mass spectra of intact molecular ions are recorded, exhibiting low fragment-ion content. To understand this contradictory behavior, the plasma properties are investigated that lead to the formation of molecular ions. Comprehensive studies include optical emission spectroscopy, shadowgraph imaging and mass spectrometry diagnostics. The results show that the ionization of analyte does not occur in the plasma itself, but in the cold adjacent gas layer. The pulsed character of LIPs induces an expanding shockwave, which concentrically expands around the plasma core and sweeps the molecules toward the plasma edges, where they are ionized either directly by the self-emission of the hot core or via interaction with secondary reactants. However, this unidirectional transport causes a rarefaction inside the plasma center, which leads to a decrease in plasma intensity and number density. Thus, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favorable. Besides gas replenishing, we demonstrate the beneficial use of an acoustical standing wave inside an ultrasonic resonator on the performance of the LIP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark ionization KW - Laser-induced plasma KW - Ambient mass spectrometry KW - DPSS laser PY - 2018 AN - OPUS4-44492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas T1 - Improving the performance of the laser-spark ion source for the detection of volatile organic compounds under ambient conditions N2 - Recently, a novel ionization scheme for ambient MS has been introduced. It is based on a quasi-continuous laser induced plasma (LIP), ignited in front of the MS inlet. This setup comprises the advantages of an ambient probe, electro neutrality, a sufficient duty cycle, a ubiquitous plasma medium, low power consumption, the absence of solvents and high sensitivity. To assess its future applicability for the detection of volatile organic compounds, plasma properties and operating conditions are investigated to understand the processes, that lead to the unexpected formation of intact molecular ions. Comprehensive studies include optical Emission spectroscopy, shadowgraphic shockwave visualization and time-of-flight mass spectrometry. T2 - 50. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie CY - Kiel, Germany DA - 05.03.2017 KW - Laser-spark KW - Laser induced plasma KW - Mass spectrometry KW - Ambient ionization PY - 2017 AN - OPUS4-39309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas T1 - Development and characterization of an airborne laser-spark ion source for ambient desorption / ionization mass spectrometry N2 - A novel direct sampling ionization scheme for ambient mass spectrometry is presented. Desorption and ionization is achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. A laser plasma was ignited under ambient conditions in front of a modified TOF MS atmospheric pressure interface, using a high repetition rate DPSS laser operating at 532 nm and 26 kHz and an aspherical lens with a focal length of 8 mm. Emission spectroscopy (40-1100 nm) and time resolved studies on specific plasma parameters revealed insight into the physical and chemical plasma properties. Plasma ignition can be performed in rare gases and under ambient conditions. The hot plasma zone was kept at a certain distance from the sample region. Thus, effective collisional cooling seemed to prevent thermal fragmentation. Every single spark generates a shockwave, providing new reactive species, which expands concentrically from the hot region. Under ambient conditions primary charge carriers (ions and electrons) as well as VUV radiation initialize reaction cascades equivalent to other ambient ionization methods, such as DART or DBD. Mass spectra of polar/nonpolar hydrocarbons, sugars, pharmaceuticals and natural biomolecules in food were observed. Comprehensive emission spectroscopic measurements and time resolved electron current studies revealed insight into some plasma properties, such as the emitted high energetic radiation and the time evolution of the expanding plume. T2 - International Mass Spectrometry Conference 2016 CY - Toronto, ON, Canada DA - 20.08.2016 KW - laser-spark KW - laser-induced plasma KW - ambient mass spectrometry KW - emission spectroscopy PY - 2016 AN - OPUS4-37281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Airborne laser-spark for ambient desorption/ionisation N2 - A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. N2 - Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die Desorption als auch die Ionisation erfolgen hierbei durch ein laserbetriebenes Luftplasma. Die Abwesenheit fester oder flüssiger Elektroden hat zur Folge, dass die Methode weder unter chemischen Interferenzen noch unter Verschleiß durch Korrosionsbrand oder abgetragenes Elektrodenmaterial leidet. Insgesamt betrachtet herrscht in dem Plasma Elektroneutralität, wodurch Aufladungseffekte minimiert werden, die andernfalls zu einer langfristigenÄderung der Flugbahnen von Ionen während der Experimente führen kann. In dem Ansatz eine freischwebende Luftentladung bei Atmosphärendruck zu verwenden agiert die Luft nicht nur als Plasmamedium sondert dient zusätzlich als Badgas für die stoßinduzierte Kühlung der entstehenden Ionen. Die Ionisierung der Analytmoleküle erfolgt nicht unmittelbar im Plasma sondern in dessen direkter Umgebung durch Wechselwirkung mit freigesetzten ionischen Luftspezies, freien Elektronen oder Photonen im kurzwelligen ultravioletten Bereich. Jede Laserentladung erzeugt eine hörbare Stoßwelle, in welcher neu produzierte reaktive Spezies freigesetzt werden, welche sich konzentrisch ausbreiten, so dass eine Diffusion der Analytmoleküle ins heiße Innere des Plasmas verhindert wird. Daraus folgt, dass im Interaktionsvolumen zwischen Plasma und Analyt der Temperaturgrenzwert für eine thermische Dissoziation oder Fragmentierung der Moleküle nicht überschritten wird. Experimentell konnte belegt werden, dass das vorgestellte Ionisierungsschema sehr unselektiv bezüglich der chemischen Analytklasse ist und kaum Fragmentierungsprodukte beobachtet werden können. Messungen einer breitgefächerten Auswahl unterschiedlicher Testsubstanzen, wie beispielsweise polarer und unpolarer Kohlenwasserstoffe, Zuckern, niedermolekularer pharmazeutischer Wirkstoffe, sowie natürlicher Biomoleküle in Lebensmittelproben unmittelbar aus ihren komplexen Matrizes, führten zu aussagekräftigen Massenspektren. Zumal das Lasermedium feuchte Luft ist, scheint der Reaktionsmechanismus dem anderer Atmosphärendruckionisierungsmethoden zuähneln. KW - Laser-spark KW - Laser-induced plasma KW - DPSS laser KW - High repetition rate KW - Ambient mass spectrometry KW - Time-of-flight mass spectrometry KW - Ionisation PY - 2016 DO - https://doi.org/10.1255/ejms.1417 SN - 1469-0667 VL - 22 IS - 3 SP - 105 EP - 114 PB - IM Publications LLP CY - Chichester, UK AN - OPUS4-37286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas T1 - Charactization of a versatile low temperature plasma torch by optical emission spectroscopy and time-of-flight mass spectrometry T2 - DGMS 2015 CY - Wuppertal, Deutschland DA - 2015-03-01 PY - 2015 AN - OPUS4-33639 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas T1 - High repetitation rate AP-MALDI in combination with liquid matrices T2 - DGMS 2014 CY - Frankfurt am Main, Germany DA - 2014-03-02 PY - 2014 AN - OPUS4-30348 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -