TY - CONF A1 - Bernicke, M. A1 - Bernsmeier, D. A1 - Ortel, Erik A1 - Kraehnert, R. T1 - IrO2 und Ir/TiOx catalysts with micelle-controlled pore structure for electro-chemical oxygen evolution (OER) T2 - MSE - Material Science Engineering CY - Darmstadt, Germany DA - 2014-09-23 PY - 2014 AN - OPUS4-32928 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernicke, M. A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Eckhardt, B. A1 - Ortel, Erik A1 - Kraehnert, R. T1 - Mesoporous OER catalysts based on Iridium/Titania: influence of the precursor on phase composition and performance T2 - 27. Deutsche Zeolith-Tagung CY - Oldenburg, Germany DA - 2015-02-25 PY - 2015 AN - OPUS4-32934 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernicke, M. A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Eckhardt, B. A1 - Ortel, Erik A1 - Kraehnert, R. T1 - Mesoporous OER catalysis based on iridium/titania: influence of the precursor on phase composition and performance T2 - El Gouna Symposium on Electrocatalysis & Materials for Energy Conversion and Storage CY - El Gouna, Egypt DA - 2015-02-01 PY - 2015 AN - OPUS4-32769 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Bernicke, M. A1 - Eckhardt, B. A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Kraehnert, R. A1 - Lippitz, Andreas T1 - Synthesis and OER activity of NiO coatings with N2 - Catalysts based on nickel oxide are some of the most active catalysts for the oxygen evolution reaction (OER) in alkaline media. However, preparing catalytic coatings with high surface area and good accessibility of the active sites remains challenging. We present a new approach for the synthesis of homogeneous and binder-free nickel oxide coatings comprising a highly accessible ordered mesopore structure. The synthesis is achieved via evaporation induced self assembly utilizing PEOPB-PEO triblock copolymers as pore template and a chemical complex of Ni2+ and citric acid as precursor. Excessive crystallization behaviour of NiO is avoided by thermal conversion of the precursor into an amorphous Ni carbonate intermediate, followed by transition of the carbonate into the metal oxide. We present a comprehensive analysis of the obtained materials in terms of morphology, crystallinity, surface area, composition, and OER activity of differently calcined catalysts. Retaining a low crystallinity and high surface area during the Synthesis proofs to be the most important factor in obtaining a highly active OER catalyst. KW - XPS KW - nanoparticle KW - catalysis PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/slct.201600110/abstract U6 - https://doi.org/10.1002/slct.201600110 VL - 2016 IS - 3/2016 SP - 482 EP - 489 PB - Wiley Online Library CY - Weinheim AN - OPUS4-35725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernicke, M. A1 - Ortel, Erik A1 - Reier, T. A1 - Bergmann, A. A1 - De Araujo, J.F. A1 - Strasser, P. A1 - Kraehnert, R. T1 - Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: Structure-activity relationships N2 - Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm-2. KW - Electrochemistry KW - Iridium KW - Structure–activity relationships KW - Template synthesis KW - Water splitting PY - 2015 U6 - https://doi.org/10.1002/cssc.201402988 SN - 1864-5631 SN - 1864-564X VL - 8 IS - 11 SP - 1908 EP - 1915 PB - Wiley-VCH CY - Weinheim AN - OPUS4-33503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frisch, M. A1 - Laun, J. A1 - Marquardt, Julien A1 - Arinchtein, A. A1 - Bauerfeind, K. A1 - Bernsmeier, D. A1 - Bernicke, M. A1 - Bredow, T. A1 - Kraehnert, R. T1 - Bridging experiment and theory: enhancing the electrical conductivities of soft-templated niobium-doped mesoporous titania films† N2 - Theoretical calculations suggest a strong dependence of electrical conductivity and doping concentration in transition-metal doped titania. Herein, we present a combined theoretical and experimental approach for the prediction of relative phase stability and electrical conductivity in niobium-doped titania as model system. Our method paves the way towards the development of materials with improved electrical properties. KW - Electrical conductivity KW - Prediction relative KW - Transition-metal doped KW - System method PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521371 SN - 1463-9084 VL - 23 IS - 5 SP - 3219 EP - 3224 PB - Royal Society of Chemistry AN - OPUS4-52137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernsmeier, D. A1 - Bernicke, M. A1 - Ortel, Erik A1 - Bergmann, A. A1 - Lippitz, Andreas A1 - Nissen, J. A1 - Schmack, R. A1 - Strasser, P. A1 - Polte, J. A1 - Kraehnert, R. T1 - Nafion-free carbon-supported electrocatalysts with superior hydrogen evolution reaction performance by soft templating N2 - Efficient water electrolysis requires electrode coatings with high catalytic activity. Platinum efficiently catalyzes the hydrogen evolution reaction in acidic environments, but is a rare and expensive metal. The activity achieved per metal atom can be increased if small Pt particles are dispersed onto electrically conductive, highly accessible and stable support materials. However, the addition of Nafion, a typical binder material used in the manufacture of electrode coatings, can decrease catalytic activity by the blocking of pores and active surface sites. A new approach is reported for the direct synthesis of highly active Nafion-free Pt/C catalyst films consisting of small Pt nanoparticles supported in size-controlled mesopores of a conductive carbon film. The synthesis relies on the co-deposition of suitable Pt and C precursors in the presence of polymer micelles, which act as pore templates. Subsequent carbonization in an inert atmosphere produces porous catalyst films with controlled film thickness, pore size and particle size. The catalysts clearly outperform all Nafion-based Pt/C catalysts reported in the literature, particularly at high current densities. KW - XPS KW - SEM KW - TEM KW - SAXS KW - Catalysis KW - Electrochemistry PY - 2017 U6 - https://doi.org/10.1002/celc.201600444 SN - 2196-0216 VL - 4 IS - 1 SP - 221 EP - 229 PB - Wiley Online Library CY - Weinheim AN - OPUS4-39733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -