TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Roellig, Mathias A1 - Maierhofer, Christiane T1 - Applicability of a 1D analytical model for pulse thermography of laterally heterogeneous semitransparent materials N2 - Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials.We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting. KW - Absorption coefficient KW - Analytical model KW - GFRP KW - Heterogeneous KW - Pulse thermography KW - Semitransparent PY - 2018 U6 - https://doi.org/10.1007/s10765-018-2362-7 SN - 0195-928X SN - 1572-9567 VL - 39 IS - 3 SP - Article 39, ICPPP 19, 1 EP - 17 PB - Springer International Publishing AG AN - OPUS4-44003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Iterative numerical 2D-modelling for quantification of material defects by pulsed thermography N2 - This paper presents a method to quantify the geometry of defects such as flat bottom holes (FBH) and notches in opaque materials by a pulse thermography (PT) experiment and a numerical model. The aim was to precisely describe PT experiments in reflection configuration with a simple and fast numerical model in order to use this model and a fit algorithm to quantify defects within the material. The algorithm minimizes the difference between the time sequence of a line shaped region of interest (ROI) on the surface (above the defect) from the PT experiment and the numerical data. Therefore, the experimental data can be reconstructed with the numerical model. In this way, the defect depth of a notch or FBH and its width or diameter was determined simultaneously. A laser was used for heating which was widened to a top hat spatial profile to ensure homogeneous illumination (rectangular impulse profile in time). The numerical simulation considers heating conditions and takes thermal losses due to convection and radiation into account. We quantified the geometry of FBH and notches in steel and polyvinyl chloride plasticized (PVC-U) materials with an accuracy of < 5 %. KW - Pulsed thermography KW - Numerical modelling KW - Data reconstruction KW - Opaque materials KW - 2D model KW - Flat bottom holes KW - Notches PY - 2019 U6 - https://doi.org/10.1063/1.5099719 SN - 0094-243X SP - 020015-1 EP - 11 PB - AIP AN - OPUS4-47974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moskovchenko, A. I. A1 - Vavilov, V. P. A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Chulkov, A. O. T1 - Detecting Delaminations in Semitransparent Glass Fiber Composite by Using Pulsed Infrared Thermography N2 - Thanks to its good strength/mass ratio, a glass fibre reinforced plastic (GFRP) composite is a common material widely used in aviation, power production, automotive and other industries. In its turn, active infrared (IR) nondestructive testing (NDT) is a common inspection technique for detecting and characterizing structural defects in GFRP. Materials to be tested are typically subjected to optical heating which is supposed to occur on the material surface. However, GFRP composite is semitransparent for optical radiation of both visual and IR spectral bands. Correspondingly, the inspection process represents a certain combination of both optical and thermal phenomena. Therefore, the known characterization algorithms based on pure heat diffusion cannot be applied to semi-transparent materials. In this study, the phenomenon of GFRP semi-transparency has been investigated numerically and experimentally in application to thermal NDT. Both Xenon flash tubes and a laser have been used for thermal stimulation of opaque and semi-transparent test objects. It has been shown that the Penetration of optical heating radiation into composite reduces detectability of shallower defects, and the signal-to-noise ratio can be enhanced by applying the technique of thermographic signal reconstruction (TSR). In the inspection of the semi-transparent GFRP composite, the most efficient has been the laser heating followed by the TSR data processing. The perspectives of defect characterization of semi-transparent materials by using laser heating are discussed. A neural network has been used as a candidate tool for evaluating defect depth in composite materials, but its training should be performed in identical with testing conditions. KW - Infrared thermography KW - Thermal testing KW - GFRP KW - Semi-transparent composite KW - Laser heating PY - 2020 U6 - https://doi.org/10.1007/s10921-020-00717-x VL - 39 SP - 69 PB - Springer Science+Business Media, LLC, part of Springer Nature 2020 AN - OPUS4-51179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - Quantification of delaminations in semitransparent solids using pulsed thermography and mathematical 1D models N2 - Material defects in fiber reinforced polymers such as delaminations can rapidly degrade the material properties or can lead to the failure of a component. Pulse thermography (PT) has proven to be a valuable tool to identify and quantify such defects in opaque materials. However, quantification of delaminations within semitransparent materials is extremely challenging. We present an approach to quantify delaminations within materials being semitransparent within the wavelength ranges of the optical excitation sources as well as of the infrared (IR) camera. PT experimental data of a glass fiber reinforced polymer with a real delamination within the material were reconstructed by one dimensional (1D) mathematical models. These models describe the heat diffusion within the material and consider semitransparency to the excitation source as well to the IR camera, thermal losses at the samples surfaces and a thermal contact resistance between the two layers describing the delamination. By fitting the models to the PT data, we were able to determine the depth of the delamination very accurately. Additionally, we analyzed synthetic PT data from a 2D simulation with our 1D-models to show how the thermal contact resistance is influenced by lateral heat flow within the material. KW - Pulsed thermography KW - Quantification KW - Numerical simulation KW - Analytical model KW - Semitransparent KW - GFRP KW - Delamination PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505766 VL - 41 IS - 5 SP - Article number: 67 PB - Springer AN - OPUS4-50576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Pulsed thermography on semitransparent materials - what has to be considered? N2 - Pulsed thermography is a well-known non-destructive testing technique and has proven to be a valuable tool for examination of material defects, to determine thermal material parameters, and the thickness of test specimens through calibration or mathematical models. However, the application to semitransparent materials is quite new and demanding, especially for semitransparent materials like epoxy, polyamide 12, or glass fiber reinforced polymers with epoxy or polyamide matrix. In order to describe the temporal temperature evolution in such materials, which are recorded with an infrared camera during pulse thermography experiments, much more influences have to be considered, compared to opaque materials: - The wavelength of the excitation source and the spectral range of the infrared camera - The angles between the specimen, the excitation source and the infrared camera - The area behind the specimen - The roughness of the material surface - The scattering mechanism within the material Here, we will consider all these influences and describe how they can be treated mathematically in analytical or numerical models (using COMSOL Multiphysics software). These models describe the temperature development during the pulse thermography experiment in reflection and transmission configuration. By fitting the results of the mathematical models to experimental data it is possible to determine the thickness or the optical and thermal properties of the specimen. T2 - 20-th International Conference on Photoacoustic and Photothermal Phenomena CY - Moscow, Russia DA - 07.07.2019 KW - Numerical simulation KW - Pulsed thermography KW - Semitransparent KW - Analytical model KW - Delamination KW - GFRP PY - 2019 AN - OPUS4-49215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Analytisches Modell zur Bestimmung der Schichtdicke für opake und semitransparente Materialien mittels Impulsthermografie N2 - Impulsthermografie ist ein bekanntes zerstörungsfreies Prüfverfahren, welches sehr gut geeignet ist, um geometrische Eigenschaften von Materialfehler, thermische Materialparameter sowie die Dicke von Objekten zu bestimmen. Die Anwendung auf semitransparente Materialien ist jedoch recht neu und anspruchsvoll, insbesondere für semitransparente Mehrschichtmaterialien wie glasfaserverstärkte Kunststoffe (GFK). Um die Dicke beschichteter und unbeschichteter semitransparenten Proben mittels Impuls-Thermografie bestimmen zu können, verwenden wir ein analytisches Modell, welches auf der Quadrupol-Methode basiert. Unser 1D-Modell berücksichtigt: • die Semitransparenz der Probe, • die Wärmeverluste an den Seitenflächen, • beliebige zeitlichen Form des Heizimpulses (um die Messbedingungen für verschiedene Wärmequellen korrekt zu beschreiben), • mögliche Flächenabsorption an der Vorder- oder Rückseite (für beschichtete Proben), • und Mehrschichtsysteme. Durch Anpassung der Ergebnisse des analytischen Modells an experimentelle Daten ist es möglich, die Dicke der Probe zu bestimmen, sofern die thermischen Materialparameter bekannt sind. Diese können z.B. durch Kalibrierungsmessungen an Proben desselben Materials mit bekannter Dicke bestimmt werden. T2 - Physikalisch-Technische Bundesanstalt CY - Berlin, Germany DA - 06.12.2017 KW - Schichtdicke KW - Analytisches Modell KW - Impulsthermografie KW - 1D-Modell KW - Semitransparent PY - 2017 AN - OPUS4-43410 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Röllig, Mathias A1 - Maierhofer, Christiane T1 - Thickness determination in active thermography for one and multilayer semitransparent materials N2 - Flash thermography is a well-known non-destructive testing technique and has proven to be a valuable tool to examine material defects and to determine thermal material parameters and the thickness of test specimens. However, its application to semitransparent materials is quite new and challenging, especially for semitransparent multilayer materials like glass fiber reinforced polymer (GFRP). Here, in order to deduce the thickness of coated and uncoated semitransparent specimens as well as the depth of defects in such specimens by means of flash thermography, we apply an analytical model based on the quadrupole method by Maillet et al. to calculate the temperature development during the flash thermography experiment. The model considers semitransparency of the sample and thermal losses at its surface. It supports the use of an arbitrary temporal shape of the heating pulse to properly describe the measurement conditions for different heat sources. By fitting the results of the analytical model to experimental data it is possible to determine the thickness of the specimen, provided the thermal material parameters are known, e.g., by calibration experiments with samples of the same material with known thickness. We will show that thickness determination of semitransparent test specimens is possible both for transmission and reflection configuration, with and without a blackened sample surface at either front or back side of the sample. As an example, Figure 1 shows the experimentally obtained temperature differences of the surface of a blackened GFRP sample in transmission configuration with the coating facing the flash lamp (usual configuration, (a)) or the infrared camera (unusual configuration, (b)). Using the proposed method, the thickness of the sample can be determined for both configurations. T2 - 19th International Conference on Photoacoustic and Photothermal Phenomena CY - Bilbao, Spain DA - 16.07.2017 KW - Semitransparent KW - Pulse thermography KW - Absorption coefficient KW - GFRP KW - Heterogeneous KW - Analytical model PY - 2017 AN - OPUS4-43409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Bernegger, Raphael A1 - Krankenhagen, Rainer T1 - Absorption coefficient dispersion in flash thermography of semitransparent solids N2 - Pulse and flash thermography are experimental techniques which are widely used in the field of non-destructive testing for materials characterization and defect detection. We recently showed that it is possible to determine quantitatively the thickness of semitransparent polymeric solids by fitting of results of an analytical model to experimental flash thermography data, for both transmission and reflection configuration. However, depending on the chosen experimental configuration, different effective optical absorption coefficients had to be used in the model to properly fit the respective experimental data, although the material was always the same. Here, we show that this effect can be explained by the wavelength dependency of the absorption coefficient of the sample material if a polychromatic light source, such as a flash lamp, is used. We present an extension of the analytical model to describe the decay of the heating irradiance by two instead of only one effective absorption coefficient, greatly extending its applicability. We show that using this extended model, the experimental results from both measurement configurations and for different sample thicknesses can be fitted by a single set of parameters. Additionally, the deviations between experimental and modeled surface temperatures are reduced compared to a single optimized effective absorption coefficient. T2 - 19th International Conference on Photoacoustic and Photothermal Phenomena CY - Bilbao, Spain KW - Absorptance KW - Dispersion KW - Flash thermography KW - Infrared thermography KW - NDT KW - Semitransparency PY - 2018 U6 - https://doi.org/10.1007/s10765-018-2474-0 SN - 0195-928X SN - 1572-9567 VL - 40 IS - 1 SP - 13, 1 EP - 13 PB - Springer Nature AN - OPUS4-47105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Quantitative determination of the geometry of defects by pulse thermography N2 - Pulsed thermography is a well-known non-destructive testing technique and has proven to be a valuable tool for examination of material defects. Material defects are often simulated by flat-bottom holes (FBH) or grooves. Typically, analytical 1D models are used to determine the defect depth of FBHs, grooves or delaminations. However, these models cannot take into account lateral heat flows, or only to a limited extent (semi-empirical model). They are therefore limited by the FBHs aspect ratio (diameter to remaining wall thickness), to ensure that the heat flow above the defect can still be described one-dimensionally. Here, we present an approach for quantitative determination of the geometry of FBH or grooves. For this purpose, the results of a numerical 2D model are fitted to experimental data, e.g., to determine simultaneously the defect depth of a FBHs or groove and its diameter or width, respectively. The model takes lateral heat flows into account as well as thermal losses. Figure 1 shows the temperature increase of a pulsed thermography measurement at three different locations on the sample. The numerical model is fitted to the experimental data (red lines) to quantify the groove. The numerical simulation matches the experimental data well. T2 - Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Pulse thermography KW - Numerical modelling KW - 2D model KW - Data reconstruction KW - Flat bottom holes KW - Notches KW - Opaque materials PY - 2018 AN - OPUS4-46103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Iterative numerical 2D-modeling for quantification of material defects by pulsed thermography N2 - Pulsed thermography is a well-known non-destructive testing technique and has proven to be a valuable tool for examination of material defects. Typically, analytical 1D models are used to determine the defect depth of flat-bottom holes (FBH), grooves or delamination. However, these models cannot take into account lateral heat flows, or only to a limited extent. They are therefore limited by the FBHs aspect ratio (diameter to remaining wall thickness), to ensure that the heat flow above the defect can still be described one-dimensionally. Here, we present an approach for quantitative determination of the geometry for FBH or grooves. For this purpose, the results of a numerical 2D model are fitted to experimental data, e.g., to determine simultaneously the defect depth of a groove or FBH and its diameter of width. The model takes lateral heat flows into account as well as thermal losses. Figure 1 shows the temperature increase of a pulsed thermography measurement at three different locations on the sample. The numerical model is fitted to the experimental data (red lines) to quantify the groove. The numerical simulation matches the experimental data well. T2 - 45th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Burlington, VT, USA DA - 15.07.2018 KW - Opaque materials KW - Pulse thermography KW - Numerical modelling KW - 2D model KW - Data reconstruction KW - Flat bottom holes KW - Notches PY - 2018 AN - OPUS4-46353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Numerical 2D model to quantify defects in semitransparent materials by pulsed thermography N2 - Pulsed thermography is a well-known non-destructive testing technique and has proven to be a valuable tool for evaluation of material defects. Material defects are often simulated by flat-bottom holes (FBH) or grooves. Typically, analytical 1D models are used to determine the defect depth of FBHs, grooves or delaminations. However, these models cannot take into account lateral heat flows, or only to a limited extent (semi-empirical model). Their applicability is therefore limited by the FBHs aspect ratio (diameter to remaining wall thickness), to ensure that the heat flow above the defect can still be described one-dimensionally. Additionally, the surfaces of semi-transparent materials have to be blackened to absorb the radiation energy on the surface of the material. Without surface coatings, these models cannot be used for semi-transparent materials. Available 1D analytical models for determination of sample or layer thicknesses also do not take into account lateral heat flows. Here, we present an approach for quantitative determination of the geometry of FBHs or grooves in semi-transparent materials by considering lateral heat flow. For this purpose, the results of a numerical 2D model are fitted to experimental data, e.g., to determine simultaneously the defect depth of a FBH or groove and its diameter or width, respectively. The model considers semi-transparency of the sample within the wavelength range of the excitation source as well as of the IR camera and thermal losses at its surfaces. Heat transport by radiation within the sample is neglected. It supports the use of an arbitrary temporal shape of the heating pulse to properly describe the measurement conditions for different heat sources. T2 - Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Pulse thermography KW - Numerical modelling KW - 2D model KW - Data reconstruction KW - Flat bottom holes KW - Notches KW - Semitrasnparent materials PY - 2018 AN - OPUS4-46105 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -