TY - CONF A1 - Uhlmann, E. A1 - Rethmeier, Michael A1 - Graf, B. A1 - Kersting, R. A1 - Bergmann, A. T1 - Flexible manufacturing with an additive process chain design, production and surface finish N2 - The industrial demand for flexible and innovative manufacturing technologies is continuously increasing. These technologies have to be sustainable and resource-efficient, and have to allow the production of long-life capital goods. Consequently, the additive processes gain in importance as they offer an enormous potential of application, especially for the turbomachinery industry. In order to use additive manufacturing technologies in industrial applications, it is necessary to consider the complete process chain, including all necessary pre- and postprocessing. Although additive manufacturing is increasingly covered in scientific research, the linking between this technology and conventional industrial processes is rarely described. T2 - ASPE Spring topical meeting - Achieving precision tolerances in additive manufacturing CY - Raleigh, NC, USA DA - 26.04.2015 PY - 2015 SN - 978-1-887706-67-4 SP - Session I, 5 EP - 9 AN - OPUS4-34855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Polte, J. A1 - Bernsmeier, D. A1 - Eckhardt, B. A1 - Paul, B. A1 - Bergmann, A. A1 - Strasser, P. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst N2 - Micro-structured reactors offer excellent mass and heat transport capabilities and can therefore sustain very high reaction rates and space–time-yields also for highly exothermic catalytic reactions. However, such high rates cannot be reached when the reactors are coated or filled with conventional catalysts powders. We present a strategy for the direct synthesis of highly active wall-coated supported catalysts via co-deposition of a pore template (here micelles formed from PEO-b-PPO-b-PEO) and a precursors for the metal oxide (TiCl4) along with a compatible precursor for the active metal (PdCl2). The obtained catalytic coatings possess a template-controlled open pore structure and excellent mechanical stability. Moreover, the active metal is highly dispersed and well-distributed across the coating also at high Pd loadings. The corresponding high activity along with rapid mass transfer enabled by the open pore system results in the best space–time-yields in the gas-phase hydrogenation of butadiene reported so far in literature for a supported catalyst. KW - Titanium oxide films KW - Palladium nanoparticle KW - Wall-coated supported catalysts KW - Template-controlled mesoporous materials KW - Hydrogenation of 1,3-butadiene PY - 2015 U6 - https://doi.org/10.1016/j.apcata.2014.12.044 SN - 0926-860X SN - 1873-3875 VL - 493 SP - 25 EP - 32 PB - Elsevier CY - Amsterdam AN - OPUS4-32465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernicke, M. A1 - Ortel, Erik A1 - Reier, T. A1 - Bergmann, A. A1 - De Araujo, J.F. A1 - Strasser, P. A1 - Kraehnert, R. T1 - Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: Structure-activity relationships N2 - Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm-2. KW - Electrochemistry KW - Iridium KW - Structure–activity relationships KW - Template synthesis KW - Water splitting PY - 2015 U6 - https://doi.org/10.1002/cssc.201402988 SN - 1864-5631 SN - 1864-564X VL - 8 IS - 11 SP - 1908 EP - 1915 PB - Wiley-VCH CY - Weinheim AN - OPUS4-33503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -