TY - JOUR A1 - Ortel, Erik A1 - Polte, J. A1 - Bernsmeier, D. A1 - Eckhardt, B. A1 - Paul, B. A1 - Bergmann, A. A1 - Strasser, P. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst N2 - Micro-structured reactors offer excellent mass and heat transport capabilities and can therefore sustain very high reaction rates and space–time-yields also for highly exothermic catalytic reactions. However, such high rates cannot be reached when the reactors are coated or filled with conventional catalysts powders. We present a strategy for the direct synthesis of highly active wall-coated supported catalysts via co-deposition of a pore template (here micelles formed from PEO-b-PPO-b-PEO) and a precursors for the metal oxide (TiCl4) along with a compatible precursor for the active metal (PdCl2). The obtained catalytic coatings possess a template-controlled open pore structure and excellent mechanical stability. Moreover, the active metal is highly dispersed and well-distributed across the coating also at high Pd loadings. The corresponding high activity along with rapid mass transfer enabled by the open pore system results in the best space–time-yields in the gas-phase hydrogenation of butadiene reported so far in literature for a supported catalyst. KW - Titanium oxide films KW - Palladium nanoparticle KW - Wall-coated supported catalysts KW - Template-controlled mesoporous materials KW - Hydrogenation of 1,3-butadiene PY - 2015 U6 - https://doi.org/10.1016/j.apcata.2014.12.044 SN - 0926-860X SN - 1873-3875 VL - 493 SP - 25 EP - 32 PB - Elsevier CY - Amsterdam AN - OPUS4-32465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernicke, M. A1 - Ortel, Erik A1 - Reier, T. A1 - Bergmann, A. A1 - De Araujo, J.F. A1 - Strasser, P. A1 - Kraehnert, R. T1 - Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: Structure-activity relationships N2 - Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm-2. KW - Electrochemistry KW - Iridium KW - Structure–activity relationships KW - Template synthesis KW - Water splitting PY - 2015 U6 - https://doi.org/10.1002/cssc.201402988 SN - 1864-5631 SN - 1864-564X VL - 8 IS - 11 SP - 1908 EP - 1915 PB - Wiley-VCH CY - Weinheim AN - OPUS4-33503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernsmeier, D. A1 - Bernicke, M. A1 - Ortel, Erik A1 - Bergmann, A. A1 - Lippitz, Andreas A1 - Nissen, J. A1 - Schmack, R. A1 - Strasser, P. A1 - Polte, J. A1 - Kraehnert, R. T1 - Nafion-free carbon-supported electrocatalysts with superior hydrogen evolution reaction performance by soft templating N2 - Efficient water electrolysis requires electrode coatings with high catalytic activity. Platinum efficiently catalyzes the hydrogen evolution reaction in acidic environments, but is a rare and expensive metal. The activity achieved per metal atom can be increased if small Pt particles are dispersed onto electrically conductive, highly accessible and stable support materials. However, the addition of Nafion, a typical binder material used in the manufacture of electrode coatings, can decrease catalytic activity by the blocking of pores and active surface sites. A new approach is reported for the direct synthesis of highly active Nafion-free Pt/C catalyst films consisting of small Pt nanoparticles supported in size-controlled mesopores of a conductive carbon film. The synthesis relies on the co-deposition of suitable Pt and C precursors in the presence of polymer micelles, which act as pore templates. Subsequent carbonization in an inert atmosphere produces porous catalyst films with controlled film thickness, pore size and particle size. The catalysts clearly outperform all Nafion-based Pt/C catalysts reported in the literature, particularly at high current densities. KW - XPS KW - SEM KW - TEM KW - SAXS KW - Catalysis KW - Electrochemistry PY - 2017 U6 - https://doi.org/10.1002/celc.201600444 SN - 2196-0216 VL - 4 IS - 1 SP - 221 EP - 229 PB - Wiley Online Library CY - Weinheim AN - OPUS4-39733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -