TY - CONF A1 - Berchtold, Florian A1 - Forell, B. A1 - Krause, U. T1 - Probabilistic set of filter criteria in the frame of Fire PSA N2 - Filter criteria in the Frame of Fire PSA identify compartments in a first qualitative analysis for which the contribution to the overall core damage frequency of the NPP is negligible. The aim of the filter criteria is to reduce the number of compartments to be analysed precisely in Fire PSA. One example for filter criteria is the 'fire load criterion'. By the fire load criterion compartments with a fire load density of less than 90 MJ/m² are 'screened out' which means to exclude them from a precise analysis in Fire PSA. Neither the justification of the particular value of 90 MJ/m² is well documented nor does this criterion take into account varying compartment configurations such as ventilation conditions, physical and chemical properties of the fire load as well as compartment characteristics. A probabilistic set of filter criteria was developed to overcome the restrictions of the fire load criterion. In line with the 'fire load criterion', the probabilistic set of filter criteria assumes that a compartment can be screened out if a fire is not able to cause any damage to other components within the compartment. Therefore, the electrical failure of an electrical cable conservatively represents the damages of all components. It is assumed that the electrical cable failure occurs when the maximum cable temperature exceeds an experimentally determined failure temperature. The maximum cable temperature that can occur in a compartment fire is mainly influenced by the four significant factors: 1. inlet air stream of the mechanical ventilation, 2. the fire growth rate, 3. the compartment floor area and 4. the compartment height. A parameter study revealed how the significant factors affect the maximum cable temperature in fictitious compartment fires. The results of the parameter study are transferred on true Nuclear Power Plant compartments. However, it is not possible to determine precisely the occurrence of an electrical cable failure because of uncertainties in the maximum cable temperature and the failure temperature. The probabilistic set of filter criteria considers these uncertainties and determines the probability of cable failure for true compartments to be screened in Fire PSA. Finally, a compartment can be screened out in Fire PSA if the failure probability exceeds a predefined accepted threshold value for the failure probability. The theoretical application of the methodology is shown at the end of the paper. T2 - International workshop on fire PRA CY - Garching, Germany DA - 28.04.2014 PY - 2014 SP - Paper 1-3 EP - 1-15 AN - OPUS4-31316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Forell, B. A1 - Krause, U. T1 - Probabilistic Set of Filter Creteria in the Frame of Fire-PSA T2 - International Workshop on Fire PRA CY - Garching, Germany DA - 2014-04-28 PY - 2014 AN - OPUS4-30706 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Thöns, Sebastian A1 - Knaust, Christian A1 - Rogge, Andreas T1 - Review of road tunnel risk assessment - common aspects? N2 - Safety measures like tunnel emergency Ventilation Systems cause high financial costs. Hence, safety measures have to be chosen with the focus on the expected reduction of the consequences like fatalities or damage on structures and in conjunction with the investments. Since 2004, the European directive EU 2004/54/EC proposes therefore the application of risk assessments. Because the EU directive provides only few legal requirements on risk assessments, the methodologies developed on this basis have large differences. After one decade of intensive research, the comparative study now highlights common aspects and differences of several methodologies. T2 - 6th International symposium on tunnel safety and security CY - Marseille, France DA - 12.03.2014 KW - Tunnel KW - System KW - Risk assessment KW - Fire KW - Safety KW - Comparative study PY - 2014 SP - 669 EP - 670 AN - OPUS4-31256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Forell, B. T1 - Set of Filter Criteria for Compartment Screening in Fire Probabilistic Safety Analysis in Nuclear Power Plants T2 - Magdeburger Brand- und Explositionsschutztag CY - Magdeburg, Germany DA - 2013-03-21 PY - 2013 AN - OPUS4-31231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Knaust, Christian A1 - Thöns, S. A1 - Rogge, Andreas T1 - Risk analysis in road tunnels – most important risk indicators N2 - Methodologies on fire risk analysis in road tunnels consider numerous factors affecting risks (risk indicators) and express the results by risk measures. But only few comprehensive studies on effects of risk indicators on risk measures are available. For this reason, this study quantifies the effects and highlights the most important risk indicators with the aim to Support further developments in risk analysis. Therefore, a system model of a road tunnel was developed to determine the risk measures. The system model can be divided into three parts: the fire part connected to the fire model Fire Dynamics Simulator (FDS); the evacuation part connected to the evacuation model FDS+Evac; and the frequency part connected to a model to calculate the frequency of fires. This study shows that the parts of the system model (and their most important risk indicators) affect the risk measures in the following order: first, fire part (maximum heat release rate); second, evacuation part (maximum preevacuation time); and, third, frequency part (specific frequency of fire). The plausibility of These results is discussed with view to experiences from experimental studies and past fire incidents. Conclusively, further research can focus on these most important risk indicators with the aim to optimise risk analysis. T2 - Seventh International Symposium on Tunnel Safety and Security CY - Boras, Sweden DA - 16.03.2016 KW - Fire KW - Risk KW - Road KW - Tunnel KW - Analysis PY - 2016 SN - 978-91-88349-11-8 SN - 0284-5172 SP - 637 EP - 648 CY - Boras, Sweden AN - OPUS4-37689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Knaust, Christian A1 - Rogge, Andreas A1 - Arnold, L. A1 - Thöns, Sebastian ED - Lönnermark, Anders ED - Ingason, Haukur T1 - Risk Analysis for Road Tunnels – A Metamodel to Efficiently Integrate Complex Fire Scenarios N2 - Fires in road tunnels constitute complex scenarios with interactions between the fire, tunnel users and safety measures. More and more methodologies for risk analysis quantify the consequences of these scenarios with complex models. Examples for complex models are the computational fluid dynamics model Fire Dynamics Simulator (FDS) and the microscopic evacuation model FDS+Evac. However, the high computational effort of complex models often limits the number of scenarios in practice. To balance this drawback, the scenarios are often simplified. Accordingly, there is a challenge to consider complex scenarios in risk analysis. To face this challenge, we improved the metamodel used in the methodology for risk analysis presented on ISTSS 2016. In general, a metamodel quickly interpolates the consequences of few scenarios simulated with the complex models to a large number of arbitrary scenarios used in risk analysis. Now, our metamodel consists of the projection array-based design, the moving least squares method, and the prediction interval to quantify the metamodel uncertainty. Additionally, we adapted the projection array-based design in two ways: the focus of the sequential refinement on regions with high metamodel uncertainties; and the combination of two experimental designs for FDS and FDS+Evac. To scrutinise the metamodel, we analysed the effects of three sequential refinement steps on the metamodel itself and on the results of risk analysis. We observed convergence in both after the second step (ten scenarios in FDS, 192 scenarios in FDS+Evac). In comparison to ISTSS 2016, we then ran 20 scenarios in FDS and 800 scenarios in FDS+Evac. Thus, we reduced the number of scenarios remarkably with the improved metamodel. In conclusion, we can now efficiently integrate complex scenarios in risk analysis. We further emphasise that the metamodel is broadly applicable on various experimental or modelling issues in fire safety engineering. T2 - International Symposium on Tunnel Safety and Security CY - Boras, Sweden DA - 14.03.2018 KW - Risk KW - Metamodel KW - CFD KW - Evacuation KW - Uncertainty PY - 2018 SN - 978-91-88695-48-2 VL - 8 SP - 349 EP - 360 AN - OPUS4-44535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Berchtold, Florian T1 - Metamodel for complex scenarios in fire risk analysis of road tunnels N2 - The risk analysis of road tunnels faces a growing complexity in fire scenarios, e.g. caused by new energy carriers. Essentially, such complex scenarios involve many interactions between the tunnel users, the fire source and the safety measures. One example is the alarm of tunnel users either initiated by the perception of smoke or by the fire alarm system. To consider these interactions for the quantification of consequences, e.g. fatalities, risk analysis requires a complex model. However, the complex model can compute in practice only few discrete scenarios due to its high computational cost, whereas risk analysis generally needs the consequences of a high number of random scenarios. Metamodels can solve this contradiction. They are able to approximate the consequences of many random scenarios with low computational cost based on the consequences of few discrete scenarios computed with the complex model. The efficiency of metamodels depends on the required number of these discrete scenarios. In this sense, this dissertation proposes an efficient metamodel within an innovative methodology for risk analysis of road tunnels to allow to consider an increased complexity of scenarios. This metamodel applies the following methods or models: the projection array-based design method specifies the experimental design for the discrete scenarios; the combination of the fire model FDS and the microscopic evacuation model FDS+Evac constitutes the complex model; and moving least squares produces the response surface model. The response surface model approximates the consequences of the random scenarios and therewith introduces an uncertainty, called metamodel uncertainty, which is quantified with the prediction interval method. Additionally, stochastic individual characteristics of tunnel users in discrete scenarios computed with FDS+Evac attribute evacuation uncertainties to the consequences. An original development in this dissertation, the ’direct approach’, directly transfers the evacuation uncertainties of the discrete scenarios to any random scenario. The evaluation of the metamodel in this dissertation shows following results. Firstly, the response surface model sufficiently represents the consequences of the complex model. Secondly, the metamodel uncertainty is also essential for this representation, but the prediction interval method reveals a drawback in the risk analysis. Potential approaches to deal with this drawback are discussed. Finally, the direct approach reproduces the evacuation uncertainty of the complex model which then clearly affects the consequences of random scenarios. Therefore, the consideration of the evacuation uncertainty plays an important role for the risk analysis. Furthermore, the projection array-based design method was adapted in this dissertation with two approaches, namely the combination of the experimental designs for FDS and FDS+Evac as well as their sequential refinement. Both approaches contribute to the efficiency of the metamodel. These results lead to following conclusions. Firstly, the metamodel efficiently integrates the consequences of discrete scenarios into risk analysis and thus allows to consider an increased complexity. Secondly, the metamodel is an advancement for risk analysis not only for road tunnelsbutalsomoregeneralinfiresafetyengineering. Forthesetworeasons,themetamodel might be interesting for other methodologies for risk analysis. In addition, the metamodel is generic and is therefore widely applicable on other issues beside from risk analysis, e.g. to assess the safety of structures related to time-consuming experiments depending on multiple variables. N2 - Risikoanalysen für Straßentunnel müssen eine immer größere Komplexität in Brandszenarien berücksichtigen, beispielsweise verursacht durch neue Energieträger. Dabei hängt die Komplexität von Szenarien mit einer Vielzahl von Interaktionen zwischen den Tunnelnutzern, der Brandquelle und den Sicherheitsmaßnahmen zusammen. Zum Beispiel werden Tunnelnutzer entweder direkt durch Rauch oder durch die Brandmeldeanlage alarmiert. Um die Interaktionen bei der Berechnung der Konsequenzen, wie z.B. getötete Personen, zu berücksichtigen, benötigen Risikoanalysen komplexe Modelle. Allerdings können komplexe Modelle wegen ihres hohen Zeitaufwandes nur wenige diskrete Szenarien simulieren, wohingegen Risikoanalysen auf Konsequenzen einer Vielzahl von Zufallsszenarien basieren. Als Lösung dieses Widerspruchs kommen Metamodelle in Betracht. Sie können die Konsequenzen von vielen Zufallsszenarien innerhalb kurzer Zeit näherungsweise berechnen und verwenden dafür die Konsequenzen von wenigen mit dem komplexen Modell simulierten diskreten Szenarien. Die Effizienz von Metamodellen hängt dabei mit der nötigen Anzahl von diskreten Szenarien zusammen. Demnach wird in dieser Dissertation ein effizientes Metamodell in eine selbst erstellteMethodikzurRisikoanalysefürStraßentunnelintegriert,umdamiteinehöhereKomplexität der Szenarien einbeziehen zu können. Das Metamodell setzt sich aus folgenden Methoden und Modellen zusammen: die ’projection array-based design’-Methode definiert den Simulationsplan für die diskreten Szenarien; eine Kombination aus dem Brandmodell FDS und dem mikroskopischen Evakuierungsmodell FDS+Evac bildet das komplexe Modell; und ’moving least squares’ dient zur Erstellung des Antwortflächenmodells. DasAntwortflächenmodellberechnetnäherungsweisedieKonsequenzen der Zufallsszenarien und erzeugt dadurch eine Unsicherheit, die Metamodellunsicherheit. Sie wird mit der ’prediction interval’-Methode bestimmt. Zusätzlich verursachen individuelle Eigenschaften der Tunnelnutzer in den mit FDS+Evac simulierten diskreten Szenarien Evakuierungsunsicherheiten in den Konsequenzen. Ein in der Dissertation neu entwickelter Ansatz, der ’direkte Ansatz’, überträgt die Evakuierungsunsicherheit der diskreten Szenarien unmittelbar auf die Zufallsszenarien. Die Untersuchung des Metamodels in der Dissertation führte zu folgenden Ergebnissen. Erstens,dasAntwortflächenmodellbildetdieKonsequenzenderdiskretenSzenarienausreichend genau ab. Zweitens, dazu trägt die Metamodellunsicherheit wesentlich bei. Allerdings zeigt die ’prediction-interval’-Methode einen Nachteil für die Risikoanalyse. Zur Lösung dieses Nachteils werden potentielle Ansätze diskutiert. Und drittens, der direkte Ansatz gibt die Evakuierungsunsicherheiten des komplexen Modells wieder, welche dann die Konsequenzen der Zufallsszenarien deutlich beeinflussen. Aus diesem Grund ist die Evakuierungsunsicherheit für die Risikoanalyse wichtig. Zusätzlich wurde die ’projection array-based design’Methode in dieser Dissertation mit zwei Ansätzen angepasst: der Verknüpfung beider Simulationspläne für FDS und FDS+Evac sowie deren schrittweisen Verfeinerung. Die Effizienz des Metamodels wird durch beide Ansätze erhöht. Diese Ergebnisse führen zu folgenden Schlussfolgerungen: erstens, das Metamodell integriert die Konsequenzen der diskreten Szenarien auf eine effiziente Weise in die Risikoanalyse und ermöglicht dadurch die Berücksichtigung einer höheren Komplexität; und zweitens, das Metamodell stellt einen Fortschritt für Risikoanalysen nicht nur für Straßentunnel sondern auch allgemein im Brandingenieurwesen dar. Aus diesen beiden Gründen kann das Metamodell für andere Methodiken zur Risikoanalyse interessant sein. Zudem ist das Metamodel flexibel auf andere Problemstellungen außerhalb der Risikoanalyse anwendbar, wie z.B. der Bewertung der Bauwerkssicherheit, welche von zeitaufwändigen Untersuchung und mehreren Variablen abhängt. KW - Metamodel KW - Surrogate KW - Uncertainty KW - Risk KW - Consequence KW - Fire KW - Evacuation KW - Tunnel PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:468-20200114-101029-6 SP - 1 EP - 171 PB - Bergische Universität Wuppertal CY - Wuppertal AN - OPUS4-51039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Thöns, Sebastian A1 - Knaust, Christian A1 - Rogge, Andreas T1 - Review of road tunnel risk assessment - common aspects? T2 - 6th International Symposium on Tunnel Safety and Security CY - Marseille, France DA - 2014-03-12 PY - 2014 AN - OPUS4-30438 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geoerg, Paul A1 - Berchtold, Florian A1 - Gwynne, Steven A1 - Boyce, Karen A1 - Holl, Stefan A1 - Hofmann-Böllinghaus, Anja T1 - Engineering egress data considering pedestrians with reduced mobility N2 - To quantify the evacuation process, evacuation practitioners use engineering egress data describing the occupant movement characteristics. These data are typically based to young and fit populations. However, the movement abilities of occupants who might be involved in evacuations are becoming more variable—with the building populations of today typically including increasing numbers of individuals: with impairments or who are otherwise elderly or generally less mobile. Thus, there will be an increasing proportion of building occupants with reduced ability to egress. For safe evacuation, there is therefore a need to provide valid Engineering egress data considering pedestrians with disabilities. Gwynne and Boyce recently compiled a series of data sets related to the evacuation process to support practitioner activities in the chapter Engineering Data in the SFPE Handbook of Fire Protection Engineering. This paper supplements these data sets by providing information on and presenting data obtained from additional research related to the premovement and horizontal movement of participants with physical-, cognitive-, or age-related disabilities. The aim is to provide an overview of currently available data sets related to, and key factors affecting the egress performance of, mixed ability populations which could be used to guide fire safety engineering decisions in the context of building design. KW - Disability KW - Egress KW - Evacuation PY - 2019 U6 - https://doi.org/10.1002/fam.2736 SN - 0308–0501 SN - 1099-1018 VL - 43 IS - 7 SP - 759 EP - 781 PB - Wiley CY - London, UK AN - OPUS4-48833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian T1 - Fire risk analysis in road tunnels N2 - Methodologies on fire risk analysis in road tunnels consider numerous factors affecting risks (risk indicators) and express the results by risk measures. But only few comprehensive studies on effects of risk indicators on risk measures are available. For this reason, this study quantifies the effects and highlights the most important risk indicators with the aim to Support further developments in risk analysis. Therefore, a system model of a road tunnel was developed to determine the risk measures. The system model can be divided into three parts: the fire part connected to the fire model Fire Dynamics Simulator (FDS); the evacuation part connected to the evacuation model FDS+Evac; and the frequency part connected to a model to calculate the frequency of fires. This study shows that the parts of the system model (and their most important risk indicators) affect the risk measures in the following order: first, fire part (maximum heat release rate); second, evacuation part (maximum preevacuation time); and, third, frequency part (specific frequency of fire). The plausibility of These results is discussed with view to experiences from experimental studies and past fire incidents. Conclusively, further research can focus on these most important risk indicators with the aim to optimise risk analysis. T2 - ISTSS - International Symposium on Tunnel Safety and Security CY - Montreal, Canada DA - 18.03.2016 KW - Analysis KW - Fire KW - Risk KW - Road KW - Tunnel PY - 2016 AN - OPUS4-39663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -