TY - CONF A1 - Philippe, P. A1 - Cuéllar, Pablo A1 - Brunier-Coulin, F. A1 - Luu, L.-H. A1 - Benahmed, N. A1 - Bonelli, S. A1 - Delenne, J.-Y. T1 - Physics of soil erosion at the microscale N2 - We focus here on the major and still relevant issue of soil erosion by fluid flows, and more specifically on the determination of both a critical threshold for erosion occurrence and a kinetics that specifies the rate of eroded matter entrainment. A state-of-the-art is first proposed with a critical view on the most commonly used methods and erosion models. It is then discussed an alternative strategy, promoting the use of model materials that allow systematic parametric investigations with the purpose of identifying more precisely the local mechanisms responsible for soil particle erosion and ultimately quantifying both critical onsets and kinetics, possibly through existing or novel empirical erosion laws. Finally, we present and discuss several examples following this methodology, implemented either by means of experiments or numerical simulations, and coupling erosion tests in several particular hydrodynamical configurations with wisely selected mechanical tests. T2 - 8th International Conference on Micromechanics on Granular Media CY - Montpellier, France DA - 03.07.2017 KW - Erosion phenomena KW - Onset of jet erosion KW - LBM-DEM numerical simulation KW - Experimental testing KW - PLIF-RIM optical techniques PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-411198 VL - 140 SP - Paper 08014, 1 EP - Paper 08014, 4 PB - The European Physical Journal (EPJ) - Web of Conferences AN - OPUS4-41119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -