TY - CONF A1 - Gollwitzer, Christian A1 - Bellon, Carsten A1 - Deresch, Andreas A1 - Ewert, Uwe A1 - Jaenisch, Gerd-Rüdiger T1 - On POD estimations with radiographic simulator aRTist N2 - The computer simulation of radiography is applicable for different purposes in NDT such as for the qualification of NDT systems, the optimization of system parameters, feasibility analysis, model-based data interpretation, education and training of NDT/NDE personnel, and others. Within the framework of the European project PICASSO simulators will be adapted to support reliability assessments of NDT tasks. The radiographic simulator aRTist developed by BAM is well suited for this task. It combines analytical modelling of the RT inspection process with the CAD-orientated object description applicable to various industrial sectors such as power generation, aerospace, railways and others. The analytic model includes the description of the radiation source, the interaction of Radiation with the material of the part, and the detection process with special focus to DIR. To support reliability estimations the simulation tool is completed by a tool for probability of detection (POD) estimation. It consists of a user interface for planning automatic simulation runs with varying parameters, specifically defect variations. Further, an automatic image analysis procedure is included to evaluate the defect visibility and calculate the POD therefrom. T2 - International symposium on digital industrial radiology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Radiographie KW - Computersimulation KW - Probability of detection PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-245092 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Tu.2.3) SP - 1 EP - 8 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Gollwitzer, Christian A1 - Fratzscher, Daniel A1 - Ewert, Uwe A1 - Jaenisch, Gerd-Rüdiger T1 - Simulation of complex scan paths for 3D reconstruction N2 - X-ray computed tomography (CT) is a volumetric (3D) Imaging diagnostic method, well established in the medical field, and in industrial NDE as well. Developments in industrial CT aim to extent the applicability to complex structures, which do not allow the access of all directions. This are e.g. limited view, data and angle CT applications. New reconstruction algorithms are required on one side, and the accuracy has to be improved on the other side. Numerical Simulation can support such developments by providing well defined data sets for the testing of reconstruction algorithms. This approach of virtual CT is realized within the radiographic simulator aRTist, developed by BAM. The poster shows the possibilities of this tool to consider complex scan paths. Simulated data sets have been reconstructed by an versatile backprojection algorithm. T2 - International symposium on digital industrial radiology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Radiographie KW - Computer-Simulation KW - 3D-Rekonstruktion PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-243928 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 17) SP - 1 EP - 4 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Bellon, Carsten A1 - Deresch, Andreas A1 - Ewert, Uwe A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Mistral, Q. ED - Thompson, D. O. ED - Chimenti, D. E. T1 - Simulation supported POD for RT test case - concept and modeling N2 - Within the framework of the European project PICASSO, the radiographic simulator aRTist (analytical Radiographic Testing inspection simulation tool) developed by BAM has been extended for reliability assessment of film and digital radiography. NDT of safety relevant components of aerospace industry requires the proof of probability of detection (POD) of the inspection. Modeling tools can reduce the expense of such extended, time consuming NDT trials, if the result of simulation fits to the experiment. Our analytic simulation tool consists of three modules for the description of the radiation source, the interaction of radiation with test pieces and flaws, and the detection process with special focus on film and digital industrial radiography. It features high processing speed with near–interactive frame rates and a high level of realism. A concept has been developed as well as a software extension for reliability investigations, completed by a user interface for planning automatic simulations with varying parameters and defects. Furthermore, an automatic image analysis procedure is included to evaluate the defect visibility. The radiographic modeling from 3D CAD of aero engine components and quality test samples are compared as a precondition for real trials. This enables the evaluation and optimization of film replacement for application of modern digital equipment for economical NDT and defined POD. T2 - 38th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Burlington, VT, USA DA - 2011-07-17 KW - X-ray imaging KW - Probability of detection KW - Simulation KW - ZfP KW - Radiographie KW - POD PY - 2012 SN - 978-0-7354-1013-8 U6 - https://doi.org/10.1063/1.4716283 SN - 0743-0760 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 31 IS - 1430 SP - 605 EP - 612 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Deresch, Andreas A1 - Gollwitzer, Christian A1 - Jaenisch, Gerd-Rüdiger T1 - Radiographic simulator aRTist: version 2 N2 - Computer simulation of radiography can be used for different purposes in NDT, such as qualification of NDT systems, optimization of radiographic parameters, feasibility analysis, model-based data interpretation, and training of NDT/NDE personnel. BAM has been working on modeling in the field of radiographic testing for many years. With the gathered theoretical background and the familiarity with practical requirements of industrial application the simulation software aRTist has been developed. This analytical simulator includes a description of the radiation source, the interaction of radiation with test pieces and flaws, and the detection process with special focus on film and digital industrial radiology. It features high processing speed with nearinteractive frame rates and a high level of realism. Here we focus on the recent developments of the simulator, notably the release of aRTist version 2. Extended functionality regarding automated virtual computed tomography now allows for arbitrary scan paths. Another program extension supports reliability investigations and provides a user interface for planning automatic simulations with varying parameters and defects. T2 - 18th WCNDT - World conference on nondestructive testing CY - Durban, South Africa DA - 16.04.2012 KW - X-ray imaging KW - Radiographic testing KW - Simulation KW - Computed tomography PY - 2012 SN - 978-0-620-52872-6 SP - 1 EP - 7 (Paper 333) AN - OPUS4-27398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Bellon, Carsten A1 - Deresch, Andreas A1 - Jaenisch, Gerd-Rüdiger A1 - Baron, H.-U. A1 - Ewert, Uwe T1 - Reliability investigations of radiographic testing using aRTist as a simulation tool N2 - Within the framework of the European project PICASSO, the radiographic simulator aRTist (analytical Radiographic Testing inspection simulation tool) developed by BAM has been extended for reliability assessment of film and digital radiography. A simulation supported probability of detection (POD) methodology has been developed and the validity of the approach has been studied using an application from the aeronautics industry. An experimental POD has been determined with the help of a specialized software tool, developed to aid with the collection of large series of POD data. The resulting POD is compared to simulations of the same setting using aRTist and the newly available module for simulation supported POD. A quantitative agreement within a few percent is achieved between the experimental and the simulation supported POD. T2 - 18th WCNDT - World conference on nondestructive testing CY - Durban, South Africa DA - 2012-04-16 KW - X-ray imaging KW - Probability of detection KW - Simulation PY - 2012 SN - 978-0-620-52872-6 SP - 1 EP - 10 (Paper 338) AN - OPUS4-27400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -