TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Bell, Jérémy A1 - Schneider, Rudolf T1 - A three-dimensional microfluidic flow cell and system integration for improved electrochemical substrate detection in HRP/TMB-based immunoassays N2 - Immunoassays, based on the recognition and capture of analytes by highly selective antibodies, are now used extensively in all areas of diagnostics, but the challenge is to further integrate them into online sensors. To improve the transition from laboratory immunoassays to immunosensors, we have developed a complete flow system, based on a microfluidic core flow cell to enable automated detection of one of the most commonly used immunoassay substrates, TMB, by chronoamperometry. The architecture and fluidic optimisation of the system showed that a specially designed 3D flow cell allows higher flow rates (500 μL min−1) than a standard enlarged microfluidic channel (50 μL min−1) resulting in a significantly shorter detection time of 30 seconds per sample and making the system more robust against interferences due to bubble formation in the chip. The electrochemical measurements showed an improved signal-to-noise ratio (SNR) and thus higher sensitivity for a model immunoassay for diclofenac (SNR = 59), compared to the analytical performance of a conventional laboratory microplate-based assay with optical detection (SNR = 19). In general, this system facilitates the conversion of any conventional immunoassay into an immunosensor with automatic and continuous detection. KW - Microfluidic KW - Immunoassay KW - Electrochemical KW - Mikrofluidik KW - Immunassay KW - Elektrochemie PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-580159 VL - 2 SP - 887 EP - 892 PB - Royal Society of Chemistry CY - London, United Kingdom AN - OPUS4-58015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ashokkumar, Pichandi A1 - Bell, Jérémy A1 - Buurman, Merwe A1 - Rurack, Knut T1 - Analytical platform for sugar sensing in commercial beverages using a fluorescent BODIPY "light-up" probe N2 - Because of the globally increasing prevalence of diabetes, the need for accurate, efficient and at best miniaturized automated analytical systems for sugar detection in medical diagnostics and the food industry is still urgent. The development of molecular probes for sugars based on boronic acid receptors offers an excellent alternative to the kinetically slow enzyme-based sugar sensors. Moreover, by coupling such chelating units with dye scaffolds like BODIPYs (boron–dipyrromethenes), highly fluorescent sugar sensing schemes can be realized. In this work, a boronic acid-functionalized BODIPY probe was developed, which binds selectively to fructose’s adjacent diols to form cyclic boronate esters. Placement of an amino group in direct neighborhood of the boronic acid moiety allowed us to obtain a broad working range at neutral pH, which distinguishes the probe from the majority of systems working only at pH > 8, while still meeting the desired sensitivity in the micro-molar range due to a pronounced analyte-induced fluorescence increase. To enhance the applicability of the test in the sense described above, integration with a microfluidic chip was achieved. Here, fructose was selectively detected by fluorescence with similar sensitivity in real time on chip, and an assay for the straightforward detection of sugar in (colored) sodas without sample clean-up was established. KW - BODIPY dyes KW - Boronic acid KW - Fluorescence KW - Microfluidics KW - Sugars PY - 2018 U6 - https://doi.org/10.1016/j.snb.2017.09.201 SN - 0925-4005 VL - 256 SP - 609 EP - 615 PB - Elsevier CY - Amsterdam AN - OPUS4-43102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Buurman, Merwe A1 - Rurack, Knut T1 - Combining a droplet-based microfluidic tubing system with gated indicator releasing nanoparticles for mercury trace detection N2 - A droplet-based microfluidic sensor was developed for the detection of Hg2+ traces in water. The approach uses gated mesoporous nanoparticles loaded with a fluorescent BODIPY dye. The squaraine-based gating mechanism is highly selective for Hg2+ and the indicator release mechanism ensures sensitive detection. The microfluidic system is modular and was assembled from simple PTFE/PFA tubes, while detection was realized with standard optomechanic, optic, and electronic parts. The sensor shows a stable response without memory effects and allows the detection of Hg2+ in water down to 20 ppt. KW - Microfluidic sensor KW - Gated delivery system KW - Fluorescence KW - Mercury KW - Hybrid nanoparticles PY - 2016 U6 - https://doi.org/10.1021/acssensors.5b00303 SN - 2379-3694 VL - 1 IS - 4 SP - 334 EP - 338 PB - American Chemical Society CY - Washington, DC AN - OPUS4-35831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burnage, Samual A1 - Bell, Jérémy A1 - Wan, Wei A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Combining a hybrid chip and tube microfluidic system with fluorescent molecularly imprinted polymer (MIP) core–shell particles for the derivatisation, extraction, and detection of peptides with N-terminating phosphorylated tyrosine N2 - The reliable identification and quantitation of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, an area of particular interest when attempting to diagnose and treat diseases at an early stage. We have developed a synthetic probe for targeting phosphorylated amino acids, based on core–shell submicron-sized particles consisting of a silica core, coated with a molecularly imprinted polymer (MIP) shell. The MIP layer contains a fluorescent probe crosslinker which binds selectively to phosphorylated tyrosine (pY) moieties with a significant imprinting factor (IF) and responds with a "light-up” fluorescence signal. The bead-based ratiometric detection scheme has been successfully transferred to a microfluidic chip format and its applicability to rapid assays has been exemplarily shown by discriminating a pY-terminating oligopeptide against its nonphosphorylated counterpart. Such miniaturised devices could lead to an automated pY or pY N-terminated peptide measurement system in the future. The setup combines a modular microfluidic system for amino acid derivatisation, extraction (by micropillar co-flow) and selective adsorption and detection with the fluorescent MIP core–shell particle probes. A miniaturised optical assembly for low-light fluorescence measurements was also developed, based on miniaturised opto-electronic parts and optical fibres. The emission from the MIP particles upon binding of pY or pY N-terminated peptides could be monitored in real-time. KW - Microfluidics KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569204 SN - 1473-0197 VL - 23 IS - 3 SP - 466 EP - 474 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gotor, Raúl A1 - Tiebe, Carlo A1 - Schlischka, Jörg A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Detection of adulterated diesel using fluorescent test strips and smartphone readout N2 - The fluorescence properties of three molecular rotors, related to 4-dimethylamino-4-nitrostilbene (4-DNS), are studied versus different diesel/kerosene blends. In nonviscous solvents, these compounds can populate a twisted intramolecular charge transfer state which deactivates nonradiatively, successfully suppressing fluorescence emission. Solution experiments with diesel/kerosene blends showed a good linear correlation between the fluorescence intensity of the probe molecules and the diesel fraction of the blend. The dyes have been immobilized on paper, retaining their fluorescence behavior, i.e., negligible emission in the presence of nonviscous organic solvents and increasing fluorescence when the environment is increasingly viscous. When the impregnated paper is devised as a test strip, the latter is compatible with a newly designed smartphone reader system, which allows in-the-field measurements. The method can safely detect the presence of kerosene in diesel at ≥7%, which competes favorably with current standard methods for the detection of diesel adulteration. KW - Fuel adulteration KW - Diesel KW - Fluorescence KW - Test strip KW - Molecular rotor KW - Smartphone PY - 2017 U6 - https://doi.org/10.1021/acs.energyfuels.7b01538 SN - 0887-0624 VL - 31 IS - 11 SP - 11594 EP - 11600 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-43103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Die 3D-Mikrofluidik mit molekular geprägten Polymerpartikeln eröffnet neue Möglichkeiten der selektiven Pestizid-Bestimmung in Wasser N2 - 2,4-D ist ein in der Landwirtschaft weitverbreitetes Pflanzenschutzmittel, das Grundwasser kontaminiert, sich innerhalb der Nahrungskette anreichert und Umwelt- und Gesundheitsprobleme verursachen kann. Hier stellen die Autoren ein mikrofluidisches Nachweissystem für die Echtzeitdetektion von 2,4-D in Grund- oder Oberflächenwasser vor. Es basiert auf der Kombination 2,4-D-selektiver, fluoreszierender, molekular geprägter Polymer-(MIP-)Mikropartikel mit einem 3D-mikrofluidischen Extraktions- und Detektionssystem. Messungen vor Ort sollen damit künftig möglich sein. KW - 3D-Mikrofluidik KW - Sensorpartikel KW - MIP KW - Pestizid PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444781 UR - https://www.labo.de/epaper/LA0318/index.html SN - 0344-5208 IS - 3 SP - 10 EP - 13 PB - WEKA Business Medien GmbH AN - OPUS4-44478 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Gotor, Raul A1 - Tobias, Charlie A1 - Bell, Jérémy A1 - Martin-Sanchez, Pedro A1 - Rurack, Knut T1 - Dip Sticks Embedding Molecular Beacon-Functionalized Core−Mesoporous Shell Particles for the Rapid On-Site Detection of Microbiological Fuel Contamination N2 - Microbial contamination of fuels by fungi and bacteria presents risks of corrosion and fuel system fouling. In this work, a rapid test for the determination of microbial genomic DNA from aqueous fuel extracts is presented. It combines test strips coated with polystyrene core/mesoporous silica shell particles, to the surface of which modified fluorescent molecular beacons are covalently grafted, with a smartphone detection system. In the hairpin loop, the beacons incorporate a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA gene, which is also present to a significant extent in the 18S rRNA gene of fungi, allowing for broadband microbial detection. In the developed assay, the presence of genomic DNA extracts from bacteria and fungi down to ca. 20−50 μg L−1 induced a distinct fluorescence response. The optical read-out was adapted for on-site monitoring by combining a 3D-printed case with a conventional smartphone, taking advantage of the sensitivity of contemporary complementary metal oxide semiconductor (CMOS) detectors. Such an embedded assembly allowed to detect microbial genomic DNA in aqueous extracts down to ca. 0.2−0.7 mg L−1 and presents an important step toward the on-site uncovering of fuel contamination in a rapid and simple fashion. KW - Bacteria KW - Fungi KW - Rapid test KW - Fluorescence KW - Smartphone KW - Biofouling PY - 2020 U6 - https://doi.org/10.1021/acssensors.0c01178 SN - 2379-3694 VL - 6 IS - 1 SP - 27 EP - 34 PB - American Chemical Society CY - Washington, DC AN - OPUS4-51956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent, Estela A1 - Gotor, Raúl A1 - Tobias, Charlie A1 - Martin-Sanchez, Pedro M. A1 - Rurack, Knut T1 - Dipstick coated with polystyrene-silica core-shell particles for the detection of microbiological fuel contamination N2 - Microbial contamination of fuels by fungi or bacteria poses risks such as corrosion and fuel system fouling, which can lead to critical problems in refineries and distribution systems and has a significant economic impact at every stage of the process. Many factors have been cited as being responsible for microbial growth, like the presence of water in the storage tanks. In fact, only 1 % water in a storage system is sufficient for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface. This work presents a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts. The detection is based on the use of polystyrene-mesoporous silica core-shell particles onto which modified fluorescent molecular beacons are covalently grafted. These beacons contain in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the developed particles were deposited on different glass fibre strips to obtain a portable and sensitive rapid test. The assays showed that the presence of genomic DNA extracts from bacteria down to 50–70 μg L–1 induced a fluorescence response. The optical read-out was adapted for on-site monitoring by fitting a 3D-printed case to a conventional smartphone, taking advantages of the sensitivity of the CMOS detector. Such embedded assembly enabled the detection of genomic DNA in aqueous extracts down to the mg L–1 range and represents an interesting step toward on-site monitoring of fuel contamination. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - Teststreifen KW - Test strip KW - Microbial KW - Mikrobiell KW - Smartphone KW - Particles KW - Partikeln PY - 2023 AN - OPUS4-58526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent Terol, Estela A1 - Buurman, Merwe A1 - Rurack, Knut T1 - Droplet-assisted liquid-liquid extraction of fluorescent cargo released from gated sensory nanoparticles in a microfluidic system T2 - Central European Conference on Photochemistry CECP 2014 CY - Bad Hofgastein, Austria DA - 2014-02-09 PY - 2014 N1 - Geburtsname von Buurman, Merwe: Albrecht, M. - Birth name of Buurman, Merwe: Albrecht, M. AN - OPUS4-31308 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -