TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Kloas, W. A1 - Bergmann, J. A1 - Bachelier, J. B. A1 - Faltin, E. A1 - Becker, Roland A1 - Görlich, A. S. A1 - Rillig, M. C. T1 - Microplastics can change soil properties and affect plant performance N2 - Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil−plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion (Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity. KW - Mikroplastik KW - Boden KW - Pflanzenwachstum PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484181 SN - 0013-936X SN - 1520-5851 VL - 53 IS - 10 SP - 6044 EP - 6052 PB - ACS AN - OPUS4-48418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Till, J. A1 - Kloas, W. A1 - Lehmann, A. A1 - Becker, Roland A1 - Rillig, M. C. T1 - Impacts of microplastics on the soil biophysical environment N2 - Soils are essential components of terrestrial ecosystems that experience strong pollution pressure. Microplastic contamination of soils is being increasingly documented, with potential consequences for soil biodiversity and function. Notwithstanding, data on effects of such contaminants on fundamental properties potentially impacting soil biota are lacking. The present study explores the potential of microplastics to disturb vital relationships between soil and water, as well as its consequences for soil structure and microbial function. During a 5-weeks garden experiment we exposed a loamy sand soil to environmentally relevant nominal concentrations (up to 2%) of four common microplastic types (polyacrylic fibers, polyamide beads, polyester fibers, and polyethylene fragments). Then, we measured bulk density, water holding capacity, hydraulic conductivity, soil aggregation, and microbial activity. Microplastics affected the bulk density, water holding capacity, and the functional relationship between the microbial activity and water stable aggregates. The effects are underestimated if idiosyncrasies of particle type and concentrations are neglected, suggesting that purely qualitative environmental microplastic data might be of limited value for the assessment of effects in soil. If extended to other soils and plastic types, the processes unravelled here suggest that microplastics are relevant long-term anthropogenic stressors and drivers of global change in terrestrial ecosystems. KW - Mikroplastik KW - Einfluß KW - Boden PY - 2018 U6 - https://doi.org/10.1021/acs.est.8b02212 SN - 0013-936X SN - 1520-5851 VL - 52 IS - 17 SP - 9656 EP - 9665 PB - American Chemical Society AN - OPUS4-46547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Sauer, Andreas A1 - Bremser, Wolfram T1 - Fifteen years of proficiency testing of total petrol hydrocarbon determination in soil: a story of success N2 - The total petrol hydrocarbon (TPH) content in soil is determined by gas chromatographic separation and flame ionisation detection according to ISO 16703 in routine laboratories for about 20 years. The development of the interlaboratory variability observed with this analytical procedure over 15 years in a proficiency testing scheme conducted annually with more than 170 participants is evaluated in detail. A significant improvement of the reproducibility standard deviation among participants is observed over the years and attributed to an increasing familiarity with the procedure. Nevertheless, the determination of TPH in the environmentally relevant mass fraction range between 500 mg/kg and 10 000 mg/kg in soils or sediments is far from reaching the reproducibility standard deviations predicted by the Horwitz curve. It is seen that laboratories with sporadic participation tend to report higher bias, while a core group of laboratories participating on a regular basis arrived at reproducibility standard deviations below 20 %. Results from a given laboratory obtained on two different samples tend to be highly correlated in the same PT round indicating a sound repeatability. Expectedly, the within-laboratory correlation between results from consecutive rounds was considerably lower. However, results from consecutive rounds with a temporal distance of 1, 2 or 3 years revealed largely similar correlations which suggests that the within-laboratory reproducibility adjusts to a constant level at least after a period of 1 year. KW - Mineralölkohlenwasserstoffe KW - Boden KW - Ringversuch KW - Gaschromatographie KW - GC-FID KW - Eingnugsprüfung KW - Proficiency Testing PY - 2019 U6 - https://doi.org/10.1007/s00769-019-01383-x SN - 0949-1775 SN - 1432-0517 VL - 24 IS - 4 SP - 289 EP - 296 PB - Springer AN - OPUS4-48419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -