TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Nehls, Irene T1 - Volatile hydrocarbons in contaminated soil: Robustness of fractional quantification using headspace gas chromatography-mass-spectrometry N2 - Fuel contamination of soils display complex and variable hydrocarbon mixtures with different volatility and toxicity characteristics. A recently suggested headspace procedure for the structure-based quantification of volatile hydrocarbons is evaluated regarding repeatability, reproducibility, and practical robustness. Three aliphatic and three aromatic fractions covering the boiling range between 69 and 216°C were defined as summation parameters by their respective equivalent carbon number ranges. A standard mixture of 35 aliphatic and aromatic hydrocarbons was used for calibration on basis of selected mass fragments specific for the aliphatics and aromatics, respectively. Two standard soils were fortified with the standard mixture or different fuels, respectively, and submitted to the analytical procedure. Limit of detection (LOD) and limit of quantification (LOQ) were for all fractions lower than 0.1 and 0.3 mg/kg, respectively. Analyte recovery was linear up to between 20 and 110 mg hydrocarbons/kg soil depending on the fraction. Hydrocarbon recovery ranged between 80% and 110% depending on the fraction and the repeatability was typically better than 10%. Finally, the impact of extraction solvent variation, column solid-phase polarity, and alternative summation of fractions were investigated. The procedure was applied to liner samples taken from a site contaminated with aviation fuel and its practicability is discussed. KW - Gasoline KW - Contaminated site KW - Equivalent carbon number KW - Fuel KW - Static headspace PY - 2018 U6 - https://doi.org/10.1080/15320383.2018.1418287 SN - 1532-0383 SN - 1549-7887 VL - 27 IS - 1 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-43889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Scholz, Philipp A1 - Jung, Christian A1 - Weidner, Steffen T1 - Thermo-Desorption Gas Chromatography-Mass Spectrometry for investigating the thermal degradation of polyurethanes N2 - Thermo-Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to investigate the thermal degradation of two different polyurethanes (PU). PU samples were heated at different heating rates and the desorbed products were collected in a cold injection system and thereafter submitted to GC-MS. Prospects and limitations of the detection and quantification of semi-volatile degradation products were investigated. A temperature dependent PU depolymerization was found at temperatures above 200 °C proved by an increasing release of 1,4-butanediol and methylene diphenyl diisocyanate (MDI) representing the main building blocks of both polymers. Their release was monitored quantitatively based on external calibration with authentic compounds. Size Exclusion Chromatography (SEC) of the residues obtained after thermodesorption confirmed the initial competitive degradation mechanism indicating an equilibrium of crosslinking and depolymerization as previously suggested. Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry of SEC fractions of thermally degraded PUs provided additional hints on degradation mechanism. KW - Thermo-desorption KW - Mass spectrometry KW - Polyurethanes KW - Thermal degradation PY - 2023 U6 - https://doi.org/10.1039/D3AY00173C SN - 1759-9660 SP - 1 EP - 6 PB - Royal Society for Chemistry AN - OPUS4-57307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mueller, Axel A1 - Becker, Roland A1 - Dorgerloh, Ute A1 - Simon, Franz-Georg A1 - Braun, Ulrike T1 - The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics N2 - Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 mg/L for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's Kow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer. KW - BTEX KW - Polypropylene KW - Polystyrene KW - Sorption KW - Degradation PY - 2018 U6 - https://doi.org/10.1016/j.envpol.2018.04.127 SN - 0269-7491 VL - 240 SP - 639 EP - 646 PB - Elsevier CY - Amsterdam AN - OPUS4-44990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Sporkert, F. A1 - Lô, I. A1 - Baumgartner, M. T1 - The determination of ethyl glucuronide in hair: Experiences from nine consecutive interlaboratory comparison rounds N2 - The increasing request for hair ethyl glucuronide (HEtG) in alcohol consumption monitoring according to cut-off levels set by the Society of Hair Testing (SoHT) has triggered a proficiency testing program based on interlaboratory comparisons (ILC). Here, the outcome of nine consecutive ILC rounds organised by the SoHT on the determination of HEtG between 2011 and 2017 is summarised regarding interlaboratory reproducibility and the influence of procedural variants. Test samples prepared from cut hair (1 mm) with authentic (in-vivo incorporated) and soaked (in-vitro incorporated) HEtG concentrations up to 80 pg/mg were provided for 27–35 participating laboratories. Laboratory results were evaluated according to ISO 5725-5 and provided robust averages and relative reproducibility standard deviations typically between 20 and 35% in reasonable accordance with the prediction of the Horwitz model. Evaluation of results regarding the analytical techniques revealed no significant differences between gas and liquid chromatographic methods In contrast, a detailed evaluation of different sample preparations revealed significantly higher average values in case when pulverised hair is tested compared to cut hair. This observation was reinforced over the different ILC rounds and can be attributed to the increased acceptance and routine of hair pulverisation among laboratories. Further, the reproducibility standard deviations among laboratories performing pulverisation were on average in very good agreement with the prediction of the Horwitz model. Use of sonication showed no effect on the HEtG extraction yield. KW - Ethyl glucuronide KW - Interlaboratory comparison KW - Proficiency testing KW - Society of hair testing KW - Reproducibility KW - Pulverization PY - 2018 U6 - https://doi.org/10.1016/j.forsciint.2018.04.025 SN - 0379-0738 SN - 1872-6283 VL - 288 SP - 67 EP - 71 PB - Elsevier AN - OPUS4-44881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ogrinc, N. A1 - Rossi, A. M. A1 - Durbiano, F. A1 - Becker, Roland A1 - Milavec, M. A1 - Bogozalec Kosir, A. A1 - Kakoulides, E. A1 - Ozer, H. A1 - Akcadag, F. A1 - Goenaga-Infante, H. A1 - Quaglia, M. A1 - Mallia, S. A1 - Umbricht, G. A1 - O'Connor, G. A1 - Guettler, B. T1 - Support for a European metrology network on food safety Food-MetNet N2 - This paper describes Food-MetNet, a coordinated preparatory initiative to establish the European Metrology Network on Food Safety (EMN-FS). Food-MetNet aims to establish a long-term ongoing dialogue between the metrology community and relevant stakeholders, in particular, European Union Reference Laboratories (EURLs), National Reference Laboratories (NRLs) and the Joint Research Centre (JRC). This dialogue is meant to support the collection of needs from stakeholders, the take-up of metrological research output and the development of the roadmaps needed to navigate future research. KW - Network KW - Metrology KW - Food KW - Safety KW - Stakeholders PY - 2021 U6 - https://doi.org/10.1016/j.measen.2021.100285 VL - 18 SP - 1 EP - 4 PB - Elsevier AN - OPUS4-53740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Roland A1 - Altmann, Korinna A1 - Braun, Ulrike T1 - Reference materials for microplastics in environmental matrices N2 - The pollution of marine, limnic and terrestrial environments with plastic waste and the potential impact especially on biota and humans has received increasing attention in recent years. Special focus is on particles smaller than 5 mm, the so-called microplastics. Consequently, possible regulations of emission and remediation efforts require sound information on the occurrence and fate of microplastics in the respective environmental compartments. Microplastics (MP) differ from classical organic pollutants in biota or the environment in that they do not consist of clearly defined low-molecular weight compounds but of polymer particulates with varying sizes and chemical compositions. This leads to specific challenges regarding the analytical techniques to be employed for their identification and quantification. Microplastics are defined as polymer particle in the size range between 1 µm and 5 mm and cover a wide range of polymers such as polyethylene, polypropylene, polystyrene and polyethylene terephthalate in variable geometric shapes. Properties relevant for environmental microplastics are polymer type, particle form and size distribution, surface morphology (aging status) and total mass fraction contained in a given sample. Polymer identification and particle size estimation using optical methods (IR and Raman spectroscopy) are time consuming and complicated by surface characteristics as a result of weathering, soiling, and microbial colonisation. Total mass fractions of MP in environmental samples can be determined by thermo-analytical methods. There are currently no standardised methods for sampling, sampling preparation, or detection of MP in environmental samples. So far, qualitative and quantitative investigations are done by research institutes and have not reached the routine laboratory community. The near future will see harmonisation efforts of MP mass fraction determination in environmental matrices by thermo-analytical procedures. The immediate need for reference materials during method development and comparison is outlined with regard to relevant matrix/polymer compositions, existing regulations and currently achievable detection limits. Examples for solid environmental matrix reference materials are discussed regarding the challenges encountered with matrices and polymer types as well as homogeneity testing and property value characterisation. T2 - BERM 2018 15th International Symposium on Biological and Environmental Reference Materials CY - Berlin, Germany DA - 23 September 2018 KW - Referenzmaterialien KW - Schwebstoffe KW - Sediment KW - Polymer PY - 2018 AN - OPUS4-46209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Roland A1 - Altmann, Korinna A1 - Braun, Ulrike T1 - Querschnittsthema Referenzmaterialien: Planung Ringversuche N2 - Nach einer Erläuterung der international üblichen Definitionen von Referenzmaterialien und Matrix-Referenzmaterialien erfolgt eine Zusammenfassung der spezifischen Anforderungen bei Herstellung und Charakterisierung. Weiterhin werden die unterschiedlichen Anforderungen an die Durchführung von Ringversuchen im Sinne eines Methodenvergleiches, einer Eignungsprüfung von Laboratorien und der Zertifizierung von Matrix-Referenzmaterialien gegenübergestellt. Für den aktuell geplanten ersten Ringversuch zur Quantifizierung von Mikroplastik in Schwebstoffen mittels thermischer Verfahren werden die konkreten technischen Bedingungen zur Herstellung entsprechender Referenzmaterialien einschließlich der Homogenitätsprüfung ihrer Mikroplastikgehalte dargestellt. Die Besonderheiten des Ringversuches vor dem Hintergrund einer Normung der eingesetzten Verfahren werden diskutiert. T2 - Forschungsschwerpunkt „Plastik in der Umwelt – Quellen • Senken • Lösungsansätze“: 2. Workshop des Querschnittsthemas „Analytik und Referenzmaterialien“ CY - Augsburg, Germany DA - 4.7.2018 KW - Mikroplastik KW - Referenzmaterialien KW - Ringversuche KW - Thermische Verfahren KW - Schwebstoffe KW - Methodenvergleich PY - 2018 AN - OPUS4-45681 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Altmann, Korinna A1 - Sommerfeld, Thomas A1 - Braun, Ulrike T1 - Quantification of microplastics in a freshwater suspended organic matter using different thermoanalytical methods – outcome of an interlaboratory comparison N2 - A sedimented freshwater suspended organic matter fortified with particles of polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) was employed in an interlaboratory comparison of thermoanalytical methods for microplastics identification and quantification. Three laboratories performed pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), three others provided results using thermal extraction desorption followed by gas chromatography coupled to mass spectrometry (TED-GC-MS). One participant performed thermogravimetry-infrared spectroscopy (TGA-FTIR) and two participants used thermogravimetry coupled to mass spectrometry (TGA-MS). Further participants used differential scanning microscopy (DSC), a procedure based on micro combustion calorimetry (MCC) and a procedure based on elemental analysis. Each participant employed a different combination of sample treatment, calibration and instrumental Settings for polymer identification and quantification. Though there is obviously room for improvements regarding the between-laboratory reproducibility and the harmonization of procedures it was seen that the participants Performing Py-GC-MS, TED-GC-MS, and TGA-FTIR were able to correctly identify all polymers and to report reasonable quantification results in the investigated concentration range (PE: 20.0 μg/mg, PP: 5.70 μg/mg; PS: 2.20 μg/mg, PET: 18.0 μg/mg). Although for the other methods limitations exists regarding the detection of specific polymers, they showed potential as alternative approaches for polymer quantification in solid environmental matrices. KW - Interlaboratory comparison KW - Microplastics KW - Suspended organic matter KW - Pyrolysis PY - 2020 U6 - https://doi.org/10.1016/j.jaap.2020.104829 VL - 148 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-50977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland T1 - Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath? N2 - In recent years numerous reports have highlighted the options of chemical breath analysis with regard to noninvasive cancer detection. Certain volatile organic compounds (VOC) supposedly present in higher amounts or in characteristic patterns have been suggested as potential biomarkers. However, so far no clinical application based on a specific set of compounds appears to exist. Numerous reports on the capability of sniffer dogs and sensor arrays or electronic noses to distinguish breath of cancer patients and healthy controls supports the concept of genuine cancer-related volatile profiles. However, the actual compounds responsible for the scent are completely unknown and there is no correlation with the potential biomarkers suggested on basis of chemical trace analysis. It is outlined that specific features connected with the VOC analysis in breath – namely small concentrations of volatiles, interfering background concentrations, considerable sampling effort and sample instability, impracticability regarding routine application - stand in the way of substantial progress. The underlying chemicalanalytical challenge can only be met considering the severe susceptibility of VOC determination to these adverse conditions. Therefore, the attention is drawn to the needs for appropriate quality assurance/quality control as the most important feature for the reliable quantification of volatiles present in trace concentration. Consequently, the advantages of urine as an alternative matrix for volatile biomarker search in the context of diagnosing lung and other cancers are outlined with specific focus on quality assurance and practicability in clinical chemistry. The headspace over urine samples as the VOC source allows adapting gas chromatographical procedures well-established in water analysis. Foremost, the selection of urine over breath as non-invasive matrix should provide considerably more resilience to adverse effects during sampling and analysis. The most important advantage of urine over breath is seen in the option to partition, dispense, mix, spike, store, and thus to dispatch taylor-made urine samples on demand for quality control measures. Although it is still open at this point if cancer diagnosis supported by non-invasively sampled VOC profiles will ultimately reach clinical application the advantages of urine over breath should significantly facilitate urgently required steps beyond the current proof-of-concept stage and towards standardisation. KW - VOC KW - Breath KW - Urine KW - Lung cancer KW - Volatile organic compounds PY - 2020 U6 - https://doi.org/10.1016/j.mehy.2020.110060 VL - 143 SP - 110060 PB - Elsevier Ltd. AN - OPUS4-51066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Kloas, W. A1 - Bergmann, J. A1 - Bachelier, J. B. A1 - Faltin, E. A1 - Becker, Roland A1 - Görlich, A. S. A1 - Rillig, M. C. T1 - Microplastics can change soil properties and affect plant performance N2 - Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil−plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion (Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity. KW - Mikroplastik KW - Boden KW - Pflanzenwachstum PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484181 SN - 0013-936X SN - 1520-5851 VL - 53 IS - 10 SP - 6044 EP - 6052 PB - ACS AN - OPUS4-48418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Heyn, L. A1 - Jung, Christian T1 - Indoor exposure to airborne polycyclic aromatic hydrocarbons: A comparison of stir bar sorptive extraction and pump sampling N2 - Stir bar sorptive extraction (SBSE) was compared with standardized pump sampling regarding the prospects to assess airborne levels of polycyclic aromatic hydrocarbons (PAHs) in indoor environments. A historic railway water tower, which will be preserved as a technical monument for museum purposes, was sampled with both approaches because the built-in insulationmaterial was suspected to release PAHs to the indoor air. The 16 PAHs on the US EPA list were quantified using gas chromatography with mass spectrometric detection in filters from pump sampling after solvent extraction and on SBSE devices after thermal desorption. SBSEwas seen to sample detectable PAHmasseswith excellent repeatability and a congener pattern largely similar to that observed with pump sampling. Congener patterns were however significantly different from that in the PAH source because release from the insulation material is largely triggered by the respective congener vapor pressures. Absolute masses in the ng range sampled by SBSE corresponded to airborne concentrations in the ng L−1 range determined by pump sampling. Principle differences between SBSE and pump sampling as well as prospects of SBSE as cost-effective and versatile complement of pump sampling are discussed. KW - Polycyclic aromatic hydrocarbons KW - Adsorption KW - Extraction KW - Indoor air PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537427 VL - 3 IS - 12 SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-53742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Till, J. A1 - Kloas, W. A1 - Lehmann, A. A1 - Becker, Roland A1 - Rillig, M. C. T1 - Impacts of microplastics on the soil biophysical environment N2 - Soils are essential components of terrestrial ecosystems that experience strong pollution pressure. Microplastic contamination of soils is being increasingly documented, with potential consequences for soil biodiversity and function. Notwithstanding, data on effects of such contaminants on fundamental properties potentially impacting soil biota are lacking. The present study explores the potential of microplastics to disturb vital relationships between soil and water, as well as its consequences for soil structure and microbial function. During a 5-weeks garden experiment we exposed a loamy sand soil to environmentally relevant nominal concentrations (up to 2%) of four common microplastic types (polyacrylic fibers, polyamide beads, polyester fibers, and polyethylene fragments). Then, we measured bulk density, water holding capacity, hydraulic conductivity, soil aggregation, and microbial activity. Microplastics affected the bulk density, water holding capacity, and the functional relationship between the microbial activity and water stable aggregates. The effects are underestimated if idiosyncrasies of particle type and concentrations are neglected, suggesting that purely qualitative environmental microplastic data might be of limited value for the assessment of effects in soil. If extended to other soils and plastic types, the processes unravelled here suggest that microplastics are relevant long-term anthropogenic stressors and drivers of global change in terrestrial ecosystems. KW - Mikroplastik KW - Einfluß KW - Boden PY - 2018 U6 - https://doi.org/10.1021/acs.est.8b02212 SN - 0013-936X SN - 1520-5851 VL - 52 IS - 17 SP - 9656 EP - 9665 PB - American Chemical Society AN - OPUS4-46547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Roland A1 - Kaiser, Melanie A1 - Dorgeloh, Ute T1 - Hinweis auf den Abbau von FCKW in kontaminiertem Grundwasser bis zur Difluoressigsäure (DFA) N2 - Ein Vergleich der Gehalte von Difluoressigsäure (DFA) und Trifluoressigsäure (TFA) in Regen- und Oberflächenwässern im Berliner Raum ergab ein TFA/DFA Verhältnis in Regenwasser von 10:1. Im Gegensatz dazu wies Grundwasser aus dem Einzugsbereich einer historischen Kontamination durch Fluorchlorkohlenwasserstoffe (FCKW) ein TFA/DFA-Verhältnis von 1:3 auf. Dies und die ungewöhnlich hohe DFA-Konzentration an dieser Stelle wird vor dem Hintergrund der beobachteten mikrobiellen Abbauprodukte des ursprünglichen eingetragenen FCKW 1,1,2-Trichlor-1,2,2-trifluorethan (R113) diskutiert. Eine mikrobielle Umwandlung des bekannten Abbauproduktes Chlortrifluorethylen (R1113) zur DFA wurde bislang nicht in Umweltkompartimenten beobachtet und wird hier auf Basis bekannter Stoffwechselwege vorgeschlagen. TFA wurde in Regenwasser, Oberflächenwasser und Grundwasser in vergleichbaren Größenordnungen von ca. 500 ng/L bestimmt. Im Gegensatz dazu wurde DFA in Grundwasserproben im Bereich der Schadstoffquelle der FCKW-Kontamination mit bis zu 2.000 ng/L nachgewiesen. Die Summe von TFA und DFA im Grundwasser korreliert nicht mit dem Eintrag aus Niederschlag und Oberflächenwasser. Darum liegt die Vermutung nahe, dass es für DFA andere Quellen als den direkten Eintrag oder den möglichen Abbauweg über TFA geben muss. DFA ist vermutlich ein Abbauprodukt von R1113. FCKWs, die im ersten Abbauschritt zu 1,1-Difluorethenen metabolisieren, stehen im Verdacht, in der Folge zu DFA zu hydrolysieren. Entscheidend scheint, dass bereits im Ausgangsprodukt ein CF2-Strukturelement enthalten ist, das dann zur Bildung von DFA führen kann. Somit würde aus dem ursprünglichen Eintrag des Kältemittels R113 über schrittweise Dechlorierung via 1,2-Dichlor-1,2,2-Trifluorethan (R123a) und R1113 die Bildung des beobachteten DFA folgen. Es ist also sinnvoll, DFA in die Diskussion zur Regulierung der Endprodukte des Abbaus fluorhaltiger Kälte- oder Lösungsmittel einzubeziehen. Die Ergebnisse wurden im Normausschuss Wasserwesen (NAW) des DIN vorgestellt und es soll ein Arbeitskreis gegründet werden, der ein Normverfahren zur Quantifizierung von TFA und DFA in Wasser erarbeitet. Interessierte Laboratorien sind herzlich eingeladen, die Normungsarbeit zu unterstützen. T2 - DEHEMA 21. Symposium Strategien zur Sanierung von Boden & Grundwasser 2019 CY - Frankfurt a.M., Germany DA - 25.11.2019 KW - Trifluoressigsäure KW - Difluoressigsäure KW - Grundwasser KW - Fluorchlorkohlenwasserstoffe PY - 2019 AN - OPUS4-49452 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea A1 - Wander, Lukas A1 - Becker, Roland A1 - Goedecke, Caroline A1 - Braun, Ulrike T1 - High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil N2 - The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, here we tested a macroscopic dimensioned NIR process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 µm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils and real-world samples, e.g. and fermenter residue, suggest a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pre-treatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method. KW - Microplastics KW - Soil KW - Chemometrics KW - PLS-DA KW - Support vector machines KW - Near Infrared Spectroscopy PY - 2018 U6 - https://doi.org/10.1007/s11356-018-2180-2 SN - 1614-7499 SN - 0944-1344 VL - 26 IS - 8 SP - 7364 EP - 7374 PB - Springer AN - OPUS4-45405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Sauer, Andreas A1 - Bremser, Wolfram T1 - Fifteen years of proficiency testing of total petrol hydrocarbon determination in soil: a story of success N2 - The total petrol hydrocarbon (TPH) content in soil is determined by gas chromatographic separation and flame ionisation detection according to ISO 16703 in routine laboratories for about 20 years. The development of the interlaboratory variability observed with this analytical procedure over 15 years in a proficiency testing scheme conducted annually with more than 170 participants is evaluated in detail. A significant improvement of the reproducibility standard deviation among participants is observed over the years and attributed to an increasing familiarity with the procedure. Nevertheless, the determination of TPH in the environmentally relevant mass fraction range between 500 mg/kg and 10 000 mg/kg in soils or sediments is far from reaching the reproducibility standard deviations predicted by the Horwitz curve. It is seen that laboratories with sporadic participation tend to report higher bias, while a core group of laboratories participating on a regular basis arrived at reproducibility standard deviations below 20 %. Results from a given laboratory obtained on two different samples tend to be highly correlated in the same PT round indicating a sound repeatability. Expectedly, the within-laboratory correlation between results from consecutive rounds was considerably lower. However, results from consecutive rounds with a temporal distance of 1, 2 or 3 years revealed largely similar correlations which suggests that the within-laboratory reproducibility adjusts to a constant level at least after a period of 1 year. KW - Mineralölkohlenwasserstoffe KW - Boden KW - Ringversuch KW - Gaschromatographie KW - GC-FID KW - Eingnugsprüfung KW - Proficiency Testing PY - 2019 U6 - https://doi.org/10.1007/s00769-019-01383-x SN - 0949-1775 SN - 1432-0517 VL - 24 IS - 4 SP - 289 EP - 296 PB - Springer AN - OPUS4-48419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Kaiser, M. T1 - Evidence for the formation of difluoroacetic acid in chlorofluorocarbon-contaminated ground water N2 - The concentrations of difluoroacetic acid (DFA) and trifluoroacetic acid (TFA) in rainwater and surface water from Berlin, Germany resembled those reported for similar urban areas, and the TFA/DFA ratio in rainwater of 10:1 was in accordance with the literature. In contrast, nearby ground water historically contaminated with 1,1,2-trichloro-1,2,2-trifluoroethane (R113) displayed a TFA/DFA ratio of 1:3. This observation is discussed versus the inventory of microbial Degradation products present in this ground water along with the parent R113 itself. A microbial Transformation of chlorotrifluoroethylene (R1113) to DFA so far has not been reported for environmental media, and is suggested based on well-established mammalian metabolic pathways. KW - Fluoroacetic acid KW - DFA KW - TFA KW - Rainwater KW - Ground water KW - Degradation of refrigerants PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-475569 SN - 1420-3049 VL - 24 IS - 6 SP - 1039, 1 EP - 6 PB - MDPI CY - Basel AN - OPUS4-47556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Recknagel, Sebastian A1 - Prinz, Carsten A1 - Vogel, Kristin A1 - Koch, Matthias A1 - Becker, Roland T1 - eCerto—versatile software for interlaboratory data evaluation and documentation during reference material production N2 - The statistical tool eCerto was developed for the evaluation of measurement data to assign property values and associated uncertainties of reference materials. The analysis is based on collaborative studies of expert laboratories and was implemented using the R software environment. Emphasis was put on comparability of eCerto with SoftCRM, a statistical tool based on the certification strategy of the former Community Bureau of Reference. Additionally, special attention was directed towards easy usability from data collection through processing, archiving, and reporting. While the effects of outlier removal can be flexibly explored, eCerto always retains the original data set and any manipulation such as outlier removal is (graphically and tabularly) documented adequately in the report. As a major reference materials producer, the Bundesanstalt für Materialforschung und -prüfung (BAM) developed and will maintain a tool to meet the needs of modern data processing, documentation requirements, and emerging fields of RM activity. The main features of eCerto are discussed using previously certified reference materials. KW - Reference material KW - Statistics KW - Software KW - Collaborative trial PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-591851 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-59185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Riedel, Juliane A1 - Hofmann, Andrea T1 - Comparison of gas- and liquid chromatography-mass spectrometry for trace analysis of anilines in groundwater N2 - Three chromatographic procedures were investigated regarding their potential for the quantification of aniline and 19 of its methylated and chlorinated derivatives in groundwater. These methods were based on liquid-liquid-extraction in combination with gas chromatography and single quadrupole mass spectrometry (GC/MS) according to German standard DIN 38407-16:1999 and its extension using tandem mass spectrometry (GC/MS-MS), both following liquid-liquid extraction, and as third alternative the direct injection of the water sample into a liquid chromatograph coupled to tandem mass spectrometry (LC/MS-MS). Results were compared using fortified water and real-world contaminated groundwater used in an interlaboratory comparison. It could be shown that GC/MS and GC/MS-MS yielded results deviating less than 10% from each other while all three procedure displayed quantification results deviating less than 15% from the intercomparison reference values in case of each analyte in the concentration range between 1 and 45 µg L-1. Though GC/MS-MS displays a ten-fold higher sensitivity than single quadrupole GC/MS, the precision of both methods in the concentration range was similar. LC/MS-MS has the advantage of no further sample preparation due to the direct injection and leads for methylanilines and meta-, para- substituted chloroanilines to results sufficiently equivalent to the standardised GC/MS method. However, LC/MS-MS is not suitable for ortho-chloroaniline derivates due to significantly lower ion yields than meta- and para-substituted chloroanilines. KW - Interlaboratory comparison KW - Aniline KW - Chloroanilines KW - Methylanilines KW - Groundwater KW - GC/MS KW - GC/MS-MS KW - LC/MS-MS PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-535793 VL - 103 IS - 19 SP - 8465 EP - 8477 PB - Taylor & Francis CY - London AN - OPUS4-53579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, Hassan A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, Katrin A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Bewitterungsszenarien im Vergleich – Veränderungen in der Oberflächenmorphologie von Polypropylen (PP) und Polystyrol (PS) unter dem Aspekt des Austrags von polybromierten Flammschutzmitteln N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umwelt-beständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - 47. Jahrestagung der GUS CY - Blankenloch-Stutensee, Germany DA - 21.03.2018 KW - Schadstoffaustrag KW - Umweltsimulation KW - Bewitterung PY - 2018 SN - 978-981-18507-2-7 VL - 47 SP - 115 EP - 128 AN - OPUS4-49802 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Sauer, Andreas A1 - Buttler, Sabine A1 - Becker, Roland T1 - Bericht zum 24. BAM-Ringversuch "Altlasten" N2 - Präsentation der Ergebnisse eines Ringversuchs zur Kompetenzbewertung von Prüflaboratorien auf dem Gebiet der anorganischen und organischen Bodenanalytik: Polychlorierte Biphenyle (PCB) in Boden, Mineralölkohlenwasserstoffe (MKW) in Boden, Elemente in Boden und Gesamtcyanid in Boden. KW - Spurenelemente KW - Boden KW - Gesamtcyanid KW - Eignungsprüfung KW - MKW KW - PCB PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-473418 SP - 1 EP - 183 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-47341 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -