TY - JOUR A1 - Köppen, Robert A1 - Becker, Roland A1 - Emmerling, Franziska A1 - Jung, Christian A1 - Nehls, Irene T1 - Enantioselective Preparative HPLC Separation of the HBCD-Stereoisomers from the Technical Product and Their Absolute Structure Elucidation Using X-Ray Crystallography N2 - 1,2,5,6,9,10-Hexabromocyclododecane (HBCD) is a widely used flame retardant, which tends to persist in the environment and accumulates in biota. The six stereoisomers (three racemates named α-, β-, and γ-HBCD) of the technical mixture were isolated with high-performance liquid chromatography (HPLC). Direct separations were performed on a chiral stationary phase containing permethylated -cyclodextrin (NUCLEODEX -PM column) and the pure enantiomers of α-, β-, and γ-HBCD were physically characterized for the first time. The absolute configurations of all six isomers were determined by anomalous dispersion using single crystal X-ray crystallography. Optical rotations αD in tetrahydrofuran were +4.2/-4.0 (α-HBCD), +26.1/-27.5 (β-HBCD), and +68.0/-66.3 (γ-HBCD). The sense of rotation could be correlated with the absolute configurations of α-, β-, and γ-HBCD enantiomers and their order of elution on a chiral permethylated β-cyclodextrin-bonded stationary phase. The diastereomers α-, β-, and γ-HBCD displayed distinctly different melting points as well as 1H-, 13C NMR, and IR spectra. KW - Brominated flame retardant KW - Chiral separation KW - Anomalous dispersion KW - Crystal structures KW - Optical rotation KW - Absolute configuration PY - 2007 DO - https://doi.org/10.1002/chir.20366 SN - 0899-0042 SN - 1520-636X VL - 19 IS - 3 SP - 214 EP - 222 PB - Wiley-Liss CY - New York, NY AN - OPUS4-14718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mönch, Bettina A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Becker, Roland A1 - Nehls, Irene T1 - n-Propyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside N2 - The title compound [systematic name: (2R,3R,4S,5R,6R) 2-(acetoxymethyl)-6-propoxytetrahydro-2H-pyran-3,4,5-triyl triacetate], C17H26O10, was formed by a Koenigs-Knorr reaction of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and n-propanol. The central ring adopts a chair conformation. The crystal does not contain any significant interactions such as hydrogen bonds. PY - 2013 DO - https://doi.org/10.1107/S1600536812051495 SN - 1600-5368 VL - 69 IS - Part 2 SP - o158, sup-1 - sup-7 PB - Munksgaard CY - Copenhagen AN - OPUS4-27439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Buge, Hans-Gerhard A1 - Bremser, Wolfram A1 - Nehls, Irene T1 - Mineral oil content in sediments and soils: comparability, traceability and a certified reference material for quality assurance N2 - The performance of twelve laboratories with previously established proficiency in the determination of the mineral oil content in a fresh water sediment is described. The summation parameter total petrol hydrocarbon (TPH) is defined according to ISO 16703:2004 with regard to the sample preparation to be applied, the flame ionisation detection (FID) and the boiling range of C10–C40 to be integrated. Comprehensive tests of homogeneity and stability have been carried out on the candidate material using appropriate models. The outcome of the study served as the basis for the certification of the candidate reference material as ERM-CC015a. The certified mass fraction is 1,820±130mgkg-1 and traceability was established by using an appropriate calibration standard certified for the mass fraction of C10–C40. The interlaboratory scatter of measurement results in this exercise can largely be explained by the variability of the individual calibrations based on this common calibration standard. KW - Total petroleum hydrocarbons KW - Extraction KW - Gas chromatography KW - Calibration KW - Interlaboratory study PY - 2006 DO - https://doi.org/10.1007/s00216-006-0423-4 SN - 1618-2642 SN - 1618-2650 VL - 385 IS - 3 SP - 645 EP - 651 PB - Springer CY - Berlin AN - OPUS4-12399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dorgerloh, Ute A1 - Theissen, H. A1 - Becker, Roland A1 - Hilbert, S. A1 - Nehls, Irene T1 - Probennahme und Quantifizierung von LHKW, Ethen und Methan in Grundwasser N2 - Der Einsatz aktiver (Pumpprobennahme, Schöpfprobennahme) und passiver (Diffusionsprobennahme) Probennahmetechniken zur Gehaltsbestimmung von LHKW sowie Ethen und Methan in Grundwasser wird aus ordnungsbehördlicher Sicht hinsichtlich der Vergleichbarkeit von Analysendaten untersucht. Am Beispiel einer Kontamination mit Trichlorethen sowie 1,2-Dichlorethen und Vinylchlorid kann deutlich gemacht werden, dass die Einsatzmöglichkeit der passiven Probennahme durch unzureichende Strömungsverhältnisse im Aquifer sowie biologische Aktivität im Pegelrohr begrenzt ist. Der aktiven Probennahme ist bei ungeklärten oder unzureichenden Strömungsverhältnissen im Grundwasserleiter daher der Vorzug zu geben. Das gaschromatographische Verfahren für Vinylchlorid mittels Dampfraumtechnik wird um die Quantifizierung von Methan und Ethen erweitert. Dabei werden für die Bewertung von Altlasten relevante Bestimmungsgrenzen von 0,1 µg/l (Vinylchlorid, Ethen) sowie 5 µg/l (Methan) erreicht. Aus der Validierung der Analysenmethode und den Ergebnissen verschiedener Probennahmen werden Toleranzbereiche für die Ergebnisse eines Grundwassermonitorings abgeschätzt. Diese Streubreiten von Monitoring- Ergebnissen sollten von Ingenieurbüros und zuständigen Ordnungsbehörden bei der Bewertung der komplexen Abbauprozesse eines LHKW-Grundwasserschadens beachtet werden. KW - Passive sampling KW - Active sampling KW - Groundwater KW - Trichloroethene KW - Vinyl chloride KW - Methane PY - 2010 DO - https://doi.org/10.1007/s00767-010-0144-7 SN - 1430-483X VL - 15 IS - 4 SP - 231 EP - 239 PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-22617 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mönch, Bettina A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Becker, Roland A1 - Nehls, Irene T1 - Isopropyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside N2 - The title compound, C17H26O10, was formed by a Koenigs-Knorr reaction of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and propan-2-ol. The central ring adopts a chair conformation. The crystal does not contain any significant intermolecular interactions. PY - 2013 DO - https://doi.org/10.1107/S1600536812051483 SN - 1600-5368 VL - 69 IS - Part 2 SP - o157, sup-1 - sup-7 PB - Munksgaard CY - Copenhagen AN - OPUS4-27572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer-Tenhagen, C. A1 - Johnen, D. A1 - Heuwieser, W. A1 - Becker, Roland A1 - Schallschmidt, Kristin A1 - Nehls, Irene T1 - Odor Perception by Dogs: Evaluating Two Training Approaches for Odor Learning of Sniffer Dogs N2 - In this study, a standardized experimental set-up with various combinations of herbs as odor sources was designed. Two training approaches for sniffer dogs were compared; first, Training with a pure reference odor, and second, training with a variety of odor mixtures with the target odor as a common denominator. The ability of the dogs to identify the target odor in a new context was tested. Six different herbs (basil, St. John’s wort, dandelion, marjoram, parsley, ribwort) were chosen to produce reference materials in various mixtures with (positive) and without (negative)chamomile as the target odor source. The dogs were trained to show 1 of 2 different behaviors, 1 for the positive, and 1 for the negative sample as a yes/no task. Tests were double blind with one sample presented at a time. In both training approaches, dogs were able to detect chamomile as the target odor in any presented mixture with an average sensitivity of 72% and a specificity of 84%. Dogs trained with odor mixture containing the target odor had more correct indications in the transfer task. KW - dog training KW - herbs KW - reference materials, KW - scent dog KW - smell KW - training model PY - 2017 DO - https://doi.org/10.1093/chemse/bjx020 SN - 1464-3553 SN - 0379-864X VL - 42 IS - 5 SP - 435 EP - 441 PB - Oxford University Press AN - OPUS4-40786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Dorgerloh, Ute A1 - Theißen, H. A1 - Nehls, Irene T1 - Stabilisation of groundwater samples for the quantification of organic trace pollutants N2 - The concentration of contaminants in groundwater samples can be decreased by degradation in the time course between field sampling and quantification in the laboratory, especially in samples from sites where degradation activity is enhanced by remediation measures. The sampling sites covered a variety of priority organic pollutants such as volatile aromatic and chlorinated compounds, phenols and petroleum hydrocarbons and different remediation strategies such as anaerobic and aerobic microbial in situ degradation, in situ chemical oxidation, and on-site purification with biological treatment. The stability of the contaminants' concentration was investigated over a time range of several hours without cooling in the autosampler of the analytical equipment (short term) and over several days of storage until analysis (long term). A number of stabilisation techniques suggested in international standards ISO 5667-3:2013 and ASTM D6517:2000 were compared both with regard to short term and long term stabilisation of the contaminants and their practicability for field sampling campaigns. Long term storage turned out to be problematic for most compound groups even under cooling. Short term stability was problematic also for volatiles such as benzenic aromates, naphthalene and volatile organic halogenated compounds to be analysed by headspace gas chromatography. Acidification (pH <2) was sufficient to prevent degradation of benzenic aromates, naphthalene, phenols and petrol hydrocarbons for up to seven days. The use of acids was not applicable to stabilise volatiles in waters rich in carbonates and sulphides due to stripping of the volatiles with the liberated gases. The addition of sodium azide was successfully used for stabilisation of volatile organic halogenated compounds. KW - Groundwater KW - Sampling KW - Organic pollutants KW - Stabilisation KW - Analysis PY - 2013 DO - https://doi.org/10.1039/c3em00332a SN - 2050-7887 SN - 2050-7895 VL - 15 IS - 12 SP - 2329 EP - 2337 PB - RSC Publ. CY - CambridgeRSC Publ. AN - OPUS4-29689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Dorgerloh, Ute A1 - Helmis, M. A1 - Mumme, J. A1 - Diakité, M. A1 - Nehls, Irene T1 - Hydrothermally carbonized plant materials: Patterns of volatile organic compounds detected by gas chromatography N2 - The nature and concentrations of volatile organic compounds (VOCs) in chars generated by hydrothermal carbonization (HTC) is of concern considering their application as soil amendment. Therefore, the presence of VOCs in solid HTC products obtained from wheat straw, biogas digestate and four woody materials was investigated using headspace gas chromatography. A variety of potentially harmful benzenic, phenolic and furanic volatiles along with various aldehydes and ketones were identified in feedstock- and temperature-specific patterns. The total amount of VOCs observed after equilibration between headspace and char samples produced at 270 °C ranged between 2000 and 16,000 µg/g (0.2–1.6 wt.%). Depending on feedstock 50–9000 µg/g of benzenes and 300–1800 µg/g of phenols were observed. Substances potentially harmful to soil ecology such as benzofurans (200–800 µg/g) and p-cymene (up to 6000 µg/g in pine wood char) exhibited concentrations that suggest restrained application of fresh hydrochar as soil amendment or for water purification. KW - Hydrochar KW - Mass spectrometry KW - Flame ionization detection KW - Phenols KW - Benzenes PY - 2013 DO - https://doi.org/10.1016/j.biortech.2012.12.102 SN - 0960-8524 SN - 1873-2976 VL - 130 SP - 621 EP - 628 PB - Elsevier Applied Science CY - Barking, Essex AN - OPUS4-27616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Theißen, H. A1 - Nehls, Irene T1 - The quantification of hydrogen and methane in contaminated groundwater: validation of robust procedures for sampling and quantification N2 - A number of currently recommended sampling techniques for the determination of hydrogen in contaminated groundwater were compared regarding the practical proficiency in field campaigns. Key characteristics of appropriate sampling procedures are reproducibility of results, robustness against varying field conditions such as hydrostatic pressure, aquifer flow, and biological activity. Laboratory set-ups were used to investigate the most promising techniques. Bubble stripping with gas sampling bulbs yielded reproducible recovery of hydrogen and methane which could be verified for groundwater sampled in two field campaigns. The methane content of the groundwater was confirmed by analysis of directly pumped samples thus supporting the trueness of the stripping results. Laboratory set-ups and field campaigns revealed that bubble stripping of hydrogen may be restricted to the type of used pump. Concentrations of dissolved hydrogen after bubble stripping with an electrically driven submersible pump were about one order of magnitude higher than those obtained from diffusion sampling. The gas chromatographic determination for hydrogen and methane requires manual injection of gas samples and detection by a pulsed discharge detector (PDD) and allows limits of quantification of 3 nM dissolved hydrogen and 1 µg L-1 dissolved methane in groundwater. The combined standard uncertainty of the bubble stripping and GC/PDD quantification of hydrogen in field samples was 7% at 7.8 nM and 18% for 78 nM. PY - 2010 DO - https://doi.org/10.1039/c0em00091d SN - 1464-0325 SN - 1464-0333 VL - 12 IS - 10 SP - 1876 EP - 1884 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-22176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Nehls, Irene T1 - Determination of volatile organic sulfur compounds in contaminated groundwater N2 - A practical method for the quantification of total purgeable organic sulfur (POS) in highly contaminated groundwater is described. Volatile organic sulfur compounds (VOSC) are purged from the water samples by a stream of oxygen and combusted. The emerging sulfur dioxide is absorbed in H2O2 and converted to sulfate which is quantified by ion chromatography and reported as mass sulfur equivalent. The overall limit of quantification is 0.03 mg l–1. The content of POS is balanced with the total VOSC determined by GC-AED after liquid–liquid extraction. Separate determination of the non-volatile organic sulfur compounds by direct combustion of the water sample and adsorption to charcoal yielded a mass balance of the total sulfur content. Semi-quantitative GC-MS after purge & trap accumulation revealed that the VOSC mixture is composed of C1–C4 alkyl sulfides. The implementation of the developed methodology for the quantification of VOSC as potential catalyst poison in a cleaning plant for groundwater contaminated with volatile haloorganics (VOX) is presented. KW - Contamination KW - Remediation KW - Summation parameter KW - Combustion KW - Ion chromatography KW - GC-AED KW - GC-MS PY - 2008 UR - http://www.springerlink.com/content/8612g42hwj7130g8/fulltext.pdf DO - https://doi.org/10.1007/s10311-007-0117-y SN - 1610-3653 SN - 1610-3661 VL - 6 IS - 2 SP - 101 EP - 106 PB - Springer CY - Berlin AN - OPUS4-16360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -