TY - JOUR A1 - Paul, Andrea A1 - Wander, Lukas A1 - Becker, Roland A1 - Goedecke, Caroline A1 - Braun, Ulrike T1 - High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil N2 - The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, here we tested a macroscopic dimensioned NIR process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 µm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils and real-world samples, e.g. and fermenter residue, suggest a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pre-treatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method. KW - Microplastics KW - Soil KW - Chemometrics KW - PLS-DA KW - Support vector machines KW - Near Infrared Spectroscopy PY - 2018 U6 - https://doi.org/10.1007/s11356-018-2180-2 SN - 1614-7499 SN - 0944-1344 VL - 26 IS - 8 SP - 7364 EP - 7374 PB - Springer AN - OPUS4-45405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mueller, Axel A1 - Becker, Roland A1 - Dorgerloh, Ute A1 - Simon, Franz-Georg A1 - Braun, Ulrike T1 - The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics N2 - Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 mg/L for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's Kow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer. KW - BTEX KW - Polypropylene KW - Polystyrene KW - Sorption KW - Degradation PY - 2018 U6 - https://doi.org/10.1016/j.envpol.2018.04.127 SN - 0269-7491 VL - 240 SP - 639 EP - 646 PB - Elsevier CY - Amsterdam AN - OPUS4-44990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -