TY - CONF A1 - Battig, Alexander T1 - Flame Retardancy Forge on Sustainability - Fun, Food for Thought, Future N2 - This presentation outlines the role biogenic flame retardant fillers play in attaining sustainability goals associated with the bioeconomy. The talk presents biogenic waste compounds as flame retardant syngergists with phosphorus flame retardants in various polymers. T2 - Climate Change @ Fire Science Workshop CY - Berlin, Germany DA - 10.11.2022 KW - Sustainable KW - Flame retardancy KW - Bioeconomy PY - 2022 AN - OPUS4-56285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander A1 - Sánchez Olivares, Guadalupe A1 - Schartel, Bernhard T1 - Waste not, Want not: Leather Industrial Waste as a Fire Retardant Adjuvant in EVA N2 - An interesting fire retardant behavior of leather wastes collected from local tannery industry was observed in a detailed study on morphological, pyrolysis, forced combustion, flammability, mechanical and rheological properties. T2 - 18th European Meeting on Fire Retardant Polymeric Materials, FRPM21 CY - Budapest, Hungary DA - 29.08.2021 KW - Leather KW - Industrial waste KW - Circular economy KW - Bio-filler KW - Sustainability KW - Ethylene vinyl acetate PY - 2021 AN - OPUS4-53205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander A1 - Markwart, J. A1 - Wurm, F.R. A1 - Schartel, Bernhard T1 - Hyperbranched Polymeric Flame Retardants: The Role of Chemical Composition and Complex Shape N2 - The need to develop effective flame retardants that retain polymer properties and are safe for consumers and the environment is a continuous challenge for material scientists. While halogenated flame retardants were once commonplace, the shift to non-halogenated materials has steadily progressed due to concerns over impact on health and the environment. One prominent group of flame retardants has become a viable alternative for halogenated materials, namely phosphorus-based flame retardants. The chemical versatility of phosphorus-based flame retardants and the ability to work as reactive or additive compounds makes them ideally suited for modern materials. There exists a trend toward complex, polymeric, and multifunction flame retardants, as these materials show greater flame retardancy performance than low molecular weight counterparts and affect material properties to a much lesser extent. One group of organophosphorus flame retardants that shows great potential for high-performance polymers like epoxy resins are hyperbranched phosphorus-based polymers. These additives exhibit great miscibility with the polymer matrix and a significantly decreased diffusion through the material, which greatly reduce leaching or blooming out of the matrix. Moreover, the material’s thermal stability remains intact at elevated temperatures due to its low impact on the glass transition temperature. Finally, following market trends and legislation such as the guidelines for the Restriction of Hazardous Substances Directive implemented by REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) in the EU, these macromolecules are non-accumulating, non-toxic and have a lower risk of leeching or blooming from the matrix, further reducing environmental impact. The work presented herein focusses on two distinct parts studying hyperbranched polymeric flame retardants and their corresponding monomeric compounds. The first part, involving the low molecular weight components, investigated the role of the chemical surrounding of phosphorus in terms of flame retardant efficacy. Here, a systematic variance of the surrounding of phosphorus was investigated: by changing the ratio of oxygen to nitrogen (4:0 until 1:3), four materials, namely phosphoester (4:0), phosphoramidate (3:1), phosphorodiamidate (2:2), and phosphoramide (1:3), were synthesized, characterized, and finally added to Bisphenol A based epoxy resins (10 wt.-% loading). Pyrolysis investigations showed that low molecular weight components volatize at lower temperatures than the polymer matrix. Additionally, cone calorimeter measurements and TGA-FTIR investigations show trends in respect to FR efficacy in pyrolysis and full flaming conditions. The second part involves the hyperbranched variants of the monomeric counterparts and investigates the role of complex shape on flame retardant efficacy. By comparing the low to the high molecular weight compounds, the influence of the complex shape becomes apparent and can be quantified. Cone calorimeter measurements show an increase in flame retardancy for some materials, while for others, the mode of action is altered. By implementing a multi-methodical approach, various flame retardancy aspects, from pyrolysis behavior in the gas and condensed phase, to ignitability / reaction-to-small-flame performance, to action in forced flammability experiments, are identified and quantified, allowing for a clearer understanding of the behavior in fire of these novel flame retardants. By comprehending the roles of chemical composition and complex shape, it opens the path for new and effective multifunctional, polymeric flame retardants with decreased PBT, higher miscibility, and low impact on Tg. This work is funded by the Deutsche Forschungsgemeinschaft (DFG: SCHA 730/15-1; WU 750/8-1). T2 - 10th International Conference on Modification, Degradation and Stabilization of Polymers, MoDeSt2018 CY - Tokyo, Japan DA - 02.09.2018 KW - Hyperbranched polymer KW - Flame retardant KW - Phosphoester KW - Phosphoramidate KW - Phosphorodiamidate KW - Pphosphoramide PY - 2018 AN - OPUS4-45965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, Jens C. A1 - Battig, Alexander A1 - Zimmermann, Lisa A1 - Wagner, Martin A1 - Fischer, Jochen A1 - Schartel, Bernhard A1 - Wurm, Frederik R. T1 - Systematically controlled decomposition mechanism in phosphorus flame retardants by precise molecular architecture: P−O vs P−N JF - ACS Applied Polymer Materials N2 - Flame retardants (FR) are inevitable additives to many plastics. Halogenated organics are effective FRs but are controversially discussed due to the release of toxic gases during a fire or their persistence if landfilled. Phosphorus-containing compounds are effective alternatives to halogenated FRs and have potential lower toxicity and degradability. In addition, nitrogencontaining additives were reported to induce synergistic effects with phosphorus-based FRs. However, no systematic study of the gradual variation on a single phosphorus FR containing both P−O and P−N moieties and their comparison to the respective blends of phosphates and phosphoramides was reported. This study developed general design principles for P−O- and P−N-based FRs and will help to design effective FRs for various polymers. We synthesized a library of phosphorus FRs that only differ in their P-binding pattern from each other and studied their decomposition mechanism in epoxy resins. Systematic control over the decomposition pathways of phosphate (PO(OR)3), phosphoramidate (PO(OR)2(NHR)), phosphorodiamidate (PO(OR)(NHR)2), phosphoramide (PO(NHR)3), and their blends was identified, for example, by reducing cis-elimination and the formation of P−N-rich char with increasing nitrogen content in the P-binding sphere. Our FR epoxy resins can compete with commercial FRs in most cases, but we proved that the blending of esters and amides outperformed the single molecule amidates/diamidates due to distinctively different decomposition mechanisms acting synergistically when blended. KW - Phosphorus KW - Flame retardants KW - Epoxies KW - Mechanistic study KW - Toxicity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481549 DO - https://doi.org/10.1021/acsapm.9b00129 SN - 2637-6105 VL - 1 IS - 5 SP - 1118 EP - 1128 PB - ACS AN - OPUS4-48154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional Graphene in Flame Retarded Polybutadiene/ Chloroprene/ Carbon Black Composites N2 - Multilayer graphene is investigated as a multifunctional nanofiller to polybutadiene/ chloroprene rubbers (BR/CR) that partially substitutes carbon black (CB) and aluminum trihydroxide (ATH). Loadings of only 3 parts per hundred rubber (phr) MLG replaced 15 phr of CB and/or 3 phr of ATH in BR/CR nanocomposites. Mechanical and fire behavior were investigated, and results point to improved rheological, curing and mechanical properties of MLG-containing rubber composites. T2 - 18th European Meeting on Fire Retardant Polymeric Materials, FRPM21 CY - Budapest, Hungary DA - 29.08.2021 KW - Graphene KW - Rubber KW - Fire Retardant KW - Nanofiller KW - Nanocomposite KW - ATH PY - 2021 AN - OPUS4-53202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander A1 - Markwart, Jens A1 - Wurm, Frederick R. A1 - Schartel, Bernhard T1 - Life is branched — Hyperbranched polyphosphoesters, -di/amidates and –amides in epoxy resins N2 - The demands for modern flame retardants are higher than ever: a flame retardant must function effectively in a certain polymer matrix and avoid critical alterations to the material’s properties. Ideally, a flame retardant additive should be easily miscible and show no sign of leaching or blooming from the matrix. Additionally, the flame retardant should be non-toxic, non-accumulating and biocompatible. Hyperbranched polymers are a promising group of multifunctional flame retardants which fulfill these demands: their complex shape enables high miscibility and avoids leaching or blooming, while their high molecular weight potentially increases biocompatibility and lowers accumulation and toxicity. Moreover, they exhibit a low impact on polymer properties and a good flame retardant performance. This work examines the efficacy and mode of action of phosphorus-based hyperbranched polymeric flame retardants in bisphenol A-based epoxy matrices. To investigate the effect of the complex shape, the hyperbranched polymers are compared to their corresponding monomeric variants. Furthermore, the materials are synthesized to contain systematically varying oxygen-to-nitrogen ratios, allowing for new insight into what role the chemical surrounding of phosphorous plays in flame retardant efficacy. Using a multi-methodical approach, including thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (FTIR), hot stage FTIR, micro combustion calorimetry, differential scanning calorimetry, oxygen index (LOI), UL-94 tests and cone calorimetry experiments, the decomposition mechanisms and the flame retardant modes of action of these flame retardants in epoxy resins are investigated, shedding new light on the chemistry of flame retardancy. T2 - Flame 2018, 29th Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials CY - Stamford, CT, USA DA - 20.05.2018 KW - Hyperbranched polymers KW - Flame retardancy KW - Fire retardant KW - Pyrolysis PY - 2018 AN - OPUS4-45129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Hyperbranched Flame Retardants N2 - Benefits of hyperbranched structure: Molecular weight, miscibility, number of FR groups, end-group functionalization, glass transition temperature, decreased PBT. Examples of hyperbranched FRs: Charring agent, silicone, triazine, etc. Systematic study of effect of chemical surrounding and impact of Complex shape of phosphorus-based hyperbranched polymers on flame retardant efficacy in epoxy resins. T2 - 16th Annual Conference on Trends in Fire Safety and Innovative Flame Retardants for Plastics CY - Würzburg, Germany DA - 23.10.2018 KW - Flame retardant KW - Hyperbranched polymers KW - Phosphoester KW - Phosphoramidate KW - Phosphorodiamidate KW - Phosphoramide KW - Pyrolysis PY - 2018 AN - OPUS4-46371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander A1 - Markwart, J.C. A1 - Wurm, F.R. A1 - Schartel, Bernhard T1 - Hyperbranched Polymeric Flame Retardants N2 - Most synthetic polymers have a high fire load, and as a result, they require flame retardants (FRs) to ensure their safe use. Phosphorus plays an important role in flame retardancy and has the potential to replace halogenated variants, which are assumed to be harmful to the environment and health. Among phosphorus-based FRs, there exists a trend towards polymeric, high molar mass molecules with complex molecular architectures. In this project, we synthesized a novel series of so-called phosphorus-based hyperbranched polymeric FRs and investigated their use as multifunctional additives to high-performance polymers, i.e. epoxy resins. By cleverly designing the chemical structure to contain varying amounts of P-O and P-N bonds, new insight into the chemical mechanism of flame retardancy was gained, and by comparing the hyperbranched polymers to their monomeric counterparts, a greater understanding of the role of complex architecture was won. This talk aims at presenting some of these results and proposes chemical mechanisms that illustrate what role these novel hyperbranched flame retardants play in molecular firefighting. T2 - AMI Fire Resistance in Plastics 2019 CY - Cologne, Germany DA - 03.12.2019 KW - Epoxy resin KW - Flame retardant KW - Hyperbranched polymers KW - Phosphoester KW - Phosphoramidate KW - Phosphoramide KW - Phosphorodiamidate KW - Pyrolysis PY - 2019 AN - OPUS4-50034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -