TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Ebert, Sebastian A1 - Lazik, D. T1 - Linear sensor for areal subsurface gas monitoring - calibration routine and validation experiments N2 - Membrane based linear gas sensors and fiber optical sensors feature similar geometries and complement each other in quantities to be measured. To the author's best knowledge, it is the first time that these sensors are combined to a multifunctional sensor for distributed measuring of gas concentrations, temperature, and strain. Objective is a comprehensive monitoring of underground gas storage areas. In the presented project a 400 m² test site and a corresponding laboratory system were just built up to characterize, validate, and optimize the combined sensor. Application of the sensor lines in a grid structure should enable spatial resolution of the measurement data and early detection of relevant events, as gas leakage, temperature change, or mechanical impact. A Calibration routine was developed which can be applied subsequent to underground installation. First measurement results indicate the potential of the method, with regard to highly topical energy transport and storage issues. T2 - IEEE Sensors 2014 conference CY - Valencia, Spain DA - 02.11.2014 KW - Linear sensor KW - Distributed sensor KW - Monitoring of CO2 KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fibre optical sensing PY - 2014 SN - 978-1-4799-0161-6 U6 - https://doi.org/10.1109/ICSENS.2014.6985157 SP - 942 EP - 945 AN - OPUS4-32083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Werner, Klaus-Dieter A1 - Erdmann, Jessica A1 - Eggeringhaus, Bärbel A1 - Kammermeier, Michael A1 - Schukar, Marcus A1 - Basedau, Frank A1 - Bartholmai, Matthias A1 - Lazik, D. A1 - Ebert, Sebastian T1 - Setup of a large scale soil test field with CO2 injection for testing a novel distributed subsurface monitoring system for gas storage areas N2 - One of the main unsolved issues of under-ground storages for, e.g., CO2, H2, and natural gas is the comprehensive surveillance of these areas with reasonable effort and costs. Conventional sensors (e.g., soil air probes or borehole probes), however, can only be used for punctual or locally limited measurements; further their application can cause structural influences (invasive application). In this paper, we describe in detail the setup of a CO2 injection soil test field. This test field will be used to enhance and validate an innovative ap-proach for distributed subsurface monitoring of gas storage areas. To the author’s knowledge, this is the first time that, for this purpose, a test field is built in an application relevant scale. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 KW - Large scale soil test field KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fiber optical sensing PY - 2014 SN - 978-3-00-046740-0 SP - 238 EP - 239 AN - OPUS4-31527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -