TY - CONF A1 - Lazik, D. A1 - Ebert, Sebastian A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Pipeline monitoring with linear gas sensors N2 - Comprehensive monitoring of pipelines over their full length is technically difficult and expensive. Considering a cost-benefit ratio it is reasonable to implement monitoring solutions in pipeline segments, which bear a high risk potential, like residential areas, construction sites, slopes, street or river crossings. Still such segments can measure up to several hundred meters in length, demanding for monitoring solutions that extend along such distances and enable fast response. Point wise sensing and periodical surveillance have clear drawbacks, particularly regarding early damage detection. Fibre optic sensors enable distributed sensing of temperature and strain, but they offer very limited possibilities for measuring gas concentrations. Linear membrane-based gas sensors enable the monitoring of gas concentrations alongside a pipeline. Such line-sensors are implemented in form of flexible tubes and can be arranged inside or outside the pipeline (also underwater or within the subsurface), corresponding to the technical requirements. The measuring method combines the gas specific diffusion rates through a membrane with Dalton’s law of partial pressures and enables the calculation of gas concentrations or the detection of a change of the gas composition. The objective is to detect gas leakages fast and with high reliability. Furthermore, the calibrated system enables to estimate the spatial extent of a leakage. So far the gas concentration measurement is tested for oxygen, carbon dioxide, methane; further gases should follow, e.g. hydrogen, carbon monoxide or mixtures like natural gas. The paper introduces in the different operating modes of line-sensors. A near real-time approach will be demonstrated to quantify the impact of a gas leak on the near environment. This approach is based on a critical length describing the expansion of the leaking gas. T2 - 9th Pipeline technology conference 2014 CY - Berlin, Germany DA - 12.05.2014 KW - Multi-sensor system KW - Condition monitoring KW - Safety management KW - Hazardous scenarios KW - Data fusion PY - 2014 SP - 1 EP - 9 AN - OPUS4-30727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Lazik, D. A1 - Neumann, Patrick P. A1 - Ebert, Sebastian T1 - Pipeline Monitoring with Linear Gas Sensors T2 - 9th Pipeline Technology Conference 2014 CY - Berlin, Germany DA - 2014-05-12 PY - 2014 AN - OPUS4-30735 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Ebert, Sebastian A1 - Werner, Klaus-Dieter A1 - Lazik, D. T1 - Linear Sensor for Areal Subsurface Gas Monitoring - Calibration Routine and Validation Experiments T2 - IEEE Sensors 2014 CY - Valencia, Spain DA - 2014-11-03 PY - 2014 AN - OPUS4-32043 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Stoppel, Markus A1 - Petrov, Sergej A1 - Hohendorf, Stefan A1 - Goedecke, Thomas T1 - Two application examples of RFID sensor systems - Identification and diagnosis of concrete components and monitoring of dangerous goods transports N2 - The combination of radio-frequency identification (RFID) tags with different types of sensors offers excellent potential for applications with regard to identification, diagnosis, and monitoring. This should be demonstrated by means of two examples of actual developments carried out by the Federal Institute for Materials Research and Testing (BAM). The Identification and diagnosis of concrete components is a major task in the maintenance of critical infrastructure, for instance concrete bridges with heavy traffic volume. A feasibility study investigates the application of RFID sensor systems for this task. The second example reviews the transportation of dangerous goods. Using modern technologies enables promising possibilities to reduce accidents and to avoid non-conformity with transportation regulations. Project results demonstrate an innovative technical solution for monitoring of dangerous goods transports with RFID sensor systems. T2 - 13th IMEKO TC10 Workshop on technical diagnostics CY - Warsaw, Poland DA - 26.04.2014 KW - RFID Sensor systems KW - Monitoring KW - Bridge components KW - Dangerous goods PY - 2014 SN - 978-92-990073-3-4 SP - ID 0019, 111 EP - 115 AN - OPUS4-30990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael A1 - Köppe, Tabea T1 - Multichannel measuring of strain and acceleration during high impact drop tests with a single cable system N2 - Multichannel measuring systems are used to measure strains and accelerations during drop tests of containments for dangerous goods. Conventional systems require cabling of each sensor and co-falling of the cable harness, causing problems in the test preparation and execution. Promising results of a single cable measuring system, consisting of measuring modules with data bus connection and local data acquisition were obtained in laboratory investigations and full-scale drop tests. T2 - Sensoren und Messsysteme 2014 - 17. ITG/GMA-Fachtagung CY - Nürnberg, Germany DA - 03.06.2014 KW - Multichannel measuring KW - Single cable system KW - Drop test PY - 2014 SN - 978-3-8007-3622-5 SN - 0932-6022 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. N1 - Serientitel: ITG-Fachbericht – Series title: ITG-Fachbericht VL - 250 SP - Article 66, 1 EP - 5 PB - VDE Verlag GmbH AN - OPUS4-30859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Stoppel, Markus T1 - Two Application Examples of RFID Sensor Systems - Identification and Diagnosis of Concrete Components and Monitoring of Dangerous Goods Transports T2 - 13th IMEKO TC10 Workshop on Technical Diagnostics CY - Warsaw, Poland DA - 2014-06-26 PY - 2014 AN - OPUS4-30931 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael T1 - Hopkinson Bar method for temperature dependent testing and calibration of accelerometers T2 - 31st Danubia Adria Symposium on Advances in Experimental Mechanics CY - Kempten, Germany DA - 2014-09-24 PY - 2014 AN - OPUS4-31543 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Mikrodrohne zur Gasmessung in Gefahrenszenarien KW - Mikrodrohne KW - UAV KW - Gefahrenszenarien KW - Gasmessung KW - Windvektorbestimmung KW - Sensortechnik PY - 2014 SP - 1 EP - 21 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin ET - Abschlussbericht / BAM Vh 8144 AN - OPUS4-31425 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Köppe, Enrico A1 - Bartholmai, Matthias T1 - Funkbasiertes Sensornetzwerk zur Schadensfrüherkennung und Langzeit-Strukturüberwachung von Bauwerken und Infrastrukturen KW - Bauwerk KW - Technische Infrastruktur KW - Technische Überwachung KW - Schadenfrüherkennung KW - Sensortechnik PY - 2014 SP - 1 EP - 35 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin ET - Abschlussbericht / BAM Vh 8142 AN - OPUS4-31426 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Köppe, Enrico A1 - Neumann, Patrick P. T1 - Monitoring of hazardous scenarios using multi-sensor devices and sensor data fusion N2 - The combination of different types of sensors to multi-sensor devices offers excellent potential for monitoring applications. This should be demonstrated by means of four different examples of actual developments carried out by Federal Institute for Materials Research and Testing (BAM): monitoring and indoor localization of relief forces, a micro-drone for gas measurement in hazardous scenarios, sensor-enabled radio-frequency identification (RFID) tags for safeguard of dangerous goods, and a multifunctional sensor for spatially resolved under-surface monitoring of gas storage areas. Objective of the presented projects is to increase the personal and technical safety in hazardous scenarios. These examples should point to application specific challenges for the applied components and infrastructure, and it should emphasize the potential of multi-sensor systems and sensor data fusion. KW - Monitoring KW - Multi-sensor KW - Hazardous scenarios KW - Data fusion PY - 2014 UR - http://www.iariajournals.org/systems_and_measurements/sysmea_v7_n34_2014_paged.pdf SN - 1942-261x VL - 7 IS - 3/4 SP - 193 EP - 200 PB - IARIA CY - [S.l.] AN - OPUS4-32509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V. H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - From Insects to Micro Air Vehicles - A Comparison of Reactive Plume Tracking Strategies N2 - Insect behavior is a common source of inspiration for roboticists and computer scientists when designing gas-sensitive mobile robots. More specifically, tracking airborne odor plumes and localization of distant gas sources are abilities that suit practical applications such as leak localization and emission monitoring. Gas sensing with mobile robots has been mostly addressed with ground-based platforms and under simplified conditions and thus, there exist a significant gap between the outstanding insect abilities and state of the art robotics systems. As a step towards practical applications, we evaluated the performance of three biologically inspired plume tracking algorithms. The evaluation is carried out not only with computer simulations, but also with real-world experiments in which, a quadrocopter-based micro Unmanned Aerial Vehicle autonomously follows a methane trail towards the emitting source. Compared to ground robots, micro UAVs bring several advantages such as their superior steering capabilities and fewer mobility restrictions in complex terrains. The experimental evaluation shows that, under certain environmental conditions, insect like behavior in gas-sensitive UAVs is feasible in real world environments. T2 - 13th International Conference on Intelligent Autonomous Systems (IAS) CY - Padova, Italy DA - 15.07.2014 KW - Autonomous micro UAV KW - Mobile robot olfaction KW - Gas source localization KW - Reactive plume tracking KW - Biologically inspired robots PY - 2014 SP - 1 EP - 12 AN - OPUS4-43920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppe, Enrico A1 - Augustin, D. A1 - Bartholmai, Matthias A1 - Daum, Werner T1 - Air-based multi-hop sensor network for the localization of persons N2 - In this work an air-based sensor network for the localization of persons at extensive areas is presented. The developed network consists of a localization device which the person is wearing (BodyGuard-System), a mobile relay station in the air, and a base station. All three parts communicate with the same radio chip. The BodyGuard-System is an inertial navigation system which was developed for localization in difficult environments with high accuracy and low measurement uncertainty. To increase the range of the system, a multi-hop network was built up. The measured data of the BodyGuard-System and the mobile relay station is visualized on a PC in the base station. This multi-hop network is necessary for example for fire department missions. T2 - EuroSensors 2014, 28th European Conference on Solid-State Transducers CY - Brescia, Italy DA - 07.09.2014 KW - WSN KW - Mesh routing KW - Air-based KW - Multi-hop KW - Localization PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-324294 SN - 1877-7058 VL - 87 SP - 528 EP - 531 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-32429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael A1 - Köppe, Tabea T1 - Multichannel Measuring of Strain and Acceleration during High Impact Drop Tests with a Single Cable System T2 - 17. ITG/GMA-Fachtagung Sensoren und Messsysteme 2014 CY - Nuremberg, Germany DA - 2014-06-03 PY - 2014 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. AN - OPUS4-30822 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -