TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Fukuoka, Japan DA - 26.05.2019 KW - Indoor air quality KW - Nano aerial robot KW - Aerial robot olfaction KW - Swarm KW - Gas detector PY - 2019 SN - 978-1-5386-8327-9 SN - 978-1-5386-8328-6 DO - https://doi.org/10.1109/ISOEN.2019.8823496 SP - 1 EP - 3 PB - IEEE AN - OPUS4-48920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Dzierliński, M. A1 - Lilienthal, A. J. A1 - Bartholmai, Matthias T1 - Aerial-based gas tomography – from single beams to complex gas distributions JF - European Journal of Remote Sensing N2 - In this paper, we present and validate the concept of an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor with a 3-axis aerial stabilization gimbal for aiming at a versatile octocopter. While the TDLAS sensor provides integral gas concentration measurements, it does not measure the distance traveled by the laser diode’s beam nor the distribution of gas along the optical path. Thus, we complement the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from a set of integral concentration measurements. To allow for a fundamental ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present results showing its performance characteristics and 2D plume reconstruction capabilities under realistic conditions. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). KW - Aerial robot olfaction KW - Mobile robot olfaction KW - Gas tomography KW - TDLAS KW - Plume PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487843 DO - https://doi.org/10.1080/22797254.2019.1640078 SP - 1 EP - 16 PB - Taylor & Francis CY - London AN - OPUS4-48784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -