TY - JOUR A1 - Mansurova, Maria A1 - Gotor, Raúl A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Bell, Jérémy T1 - Fluorescent Hydrophobic Test Strips with Sterically Integrated Molecular Rotors for the Detection of Hydrocarbons in Water and Soil with an Embedded Optical Read-Out N2 - Contamination of natural bodies of water or soil with oils and lubricants (or generally, hydrocarbon derivatives such as petrol, fuels, and others) is a commonly found phenomenon around the world due to the extensive production, transfer, and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPHs) in water and soil. The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4-DNS-OH). This dye is embedded in a hydrophobic polymeric matrix (polyvinylidene fluoride), avoiding interactions with water and providing a robust support for use in a test strip fashion. Together with the strips, an embedded optical system was designed for fluorescence signal read-out, featuring a Bluetooth low-energy connection to a commercial tablet device for data processing and analysis. This system works for the detection and quantification of TPHs in water and soil through a simple extraction protocol using a cycloalkane solvent with a limit of detection of 6 ppm. Assays in surface and sea waters were conclusive, proving the feasibility of the method for in-the-field operation. KW - Test strip KW - Sensor KW - Smartphone KW - Fluorescence KW - Test Streifen KW - Sensoren KW - Fluoreszenz KW - Petrol KW - Öl PY - 2023 DO - https://doi.org/10.1021/acs.energyfuels.3c01175 SN - 0887-0624 SP - 1 EP - 6 PB - American Chemical Society CY - Washington, United States AN - OPUS4-57892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nattuveettil, Keerthana A1 - Brunner, Nanine A1 - Tiebe, Carlo A1 - Thomas, Marcus A1 - Melzer, Michael A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Neumann, Patrick P. T1 - Digital approach of certification in Quality Infrastructure N2 - QI-Digital is a joined project aiming at digitalising Quality Infrastructure (QI) processes involving standardization, conformity assessment, accreditation, metrology, and market surveillance [1]. Federal institute of material research and testing (BAM) is working on the creation of a digital calibration certifi-cate (DCC) to achieve digital metrological traceability and conformity assessment. The utilisation of machine readable and executable DCCs in the XML format is demonstrated on an example of a tem-perature measurement at a hydrogen refueling station. The certificates will be retrieved and analysed automatically at a Process Control System or at a Digital Twin. T2 - SMSI 2023 Conference CY - Nürnberg, Germany DA - 08.05.2023 KW - Quality Infrastructure KW - Digital Certificates KW - Temperature calibration KW - Digitalisation KW - Hydrogen technology PY - 2023 DO - https://doi.org/10.5162/SMSI2023/A3.4 SP - 51 EP - 52 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-57964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -