TY - CONF A1 - Neumann, Patrick P. A1 - Wosniok, Aleksander A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Test field for the validation of a multifunctional sensor for distributed subsurface monitoring of gas storage areas N2 - BAM Federal Institute for Materials Research and Testing, in cooperation with the company MeGaSen UG carries out a research project to enhance and validate an innovative approach for distributed subsurface monitoring of gas storage areas. The concept combines different measurement technologies to one multifunctional sensor: membrane-based gas measurement technology for in-situ monitoring of gases in soil and fiber optical sensing of temperature and strain (as a measure for structural change). Key aspect of the research project is the first-time validation of the system in an application relevant dimension. For this purpose a 20 x 20 m2 test field is build. A comprehensive validation of the system is carried out by systematic variation of different parameters like position-dependent gasinjection, temperature and mechanical impact. T2 - Sensor 2013 - 16th International conference on sensors and measurement technology CY - Nürnberg, Germany DA - 14.05.2013 KW - Distributed multifunctional sensor KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fiber optical sensing PY - 2013 SN - 978-3-9813484-3-9 U6 - https://doi.org/10.5162/sensor2013/P2.2 N1 - Serientitel: AMA Conferences – Series title: AMA Conferences SP - 713 EP - 716 AN - OPUS4-28652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrov, Sergej A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Wosniok, Aleksander A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Nicoletto, G. ED - Pastrama, S.D. ED - Emri, I. T1 - Concept for investigating mechanical and thermal impacts on distributed subsurface gas monitoring N2 - A multifunctional sensor in line shape was developed and introduced in previous work for measuring of gas concentrations, temperature change, and strain. A current field study focuses on a spatially distributed monitoring of subsurface CO 2 gas storage sites in near real time. Mechanical impacts, e.g., caused by construction work, denudation, and seismic activity, can affect the integrity of underground gas storage sites. Thermal or moisture impacts, e.g., caused by weather conditions, can influence the gas Distribution behavior. In this paper, we briefly describe the setup of a CO 2 injection soil test field. This setup contains actuating elements for the investigation of mechanical and thermal impacts on distributed subsurface gas monitoring. A concept is given for evaluating these impacts and first experimental results are presented. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Linear sensor KW - Distributed sensor KW - Monitoring of CO 2 KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fibre optical sensing PY - 2016 U6 - https://doi.org/10.1016/j.matpr.2016.03.060 SN - 2214-7853 VL - 3 IS - 4 SP - 1124 EP - 1128 PB - Elsevier Ltd. AN - OPUS4-35688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -