TY - CONF A1 - Bartholmai, Matthias A1 - Ebert, Sebastian A1 - Neumann, Patrick P. A1 - Noske, Reinhard A1 - Rehak, W. A1 - Lazik, D. T1 - Linear gas sensor for methane based on a selectively permeable membrane T2 - AMA Conferences 2015 with SENSOR and IRS2 (Proceedings) N2 - In preliminary work, gas sensors in linear form based on the measuring principle of gas selective permeability through a membrane were developed and introduced for the detection and quantification of gas concentrations. In this study, first experimental results are presented for adapting the technology for measuring methane (CH4). A material with suitable selective permeability was identified and utilized in a sensor setup containing the gas selective membrane and a reference membrane, both integrated in a measuring cell, to which a gas stream with defined CH4 concentrations was applied. The results prove the sensor's capability for measuring methane and indicate further application potential of the method, e.g., as a robust field monitoring technology, since CH4 is the major component of natural gas, town gas, and fracking gas. T2 - AMA Conferences 2015 with SENSOR and IRS2 CY - Nuremberg, Germany DA - 19.05.2015 KW - Selective permeability KW - Quantification of gas concentrations KW - Spatially distributed monitoring KW - Gas storage sites KW - Methane measuring PY - 2015 SN - 978-3-9813484-8-4 DO - https://doi.org/10.5162/sensor2015/P8.1 SP - 833 EP - 835 AN - OPUS4-33263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Ebert, Sebastian A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Inverse calibration routine for linear soil gas sensors T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - Gas sensors in linear form based on the measuring principle of gas selective permeability through a membrane were developed and introduced for the detection and quantification of gas concentrations. A current field study focuses on measuring CO2 concentrations for a spatially distributed monitoring of subsurface CO2 gas storage sites in near real time. A 400 m(2) test site and a corresponding laboratory system were built up to characterize, validate, and optimize the sensor. A calibration routine was developed, which can be applied subsequently to underground installation. First measurement results indicate the potential of the method. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - StarĂ½ Smokovec, Slovakia DA - 22.09.2015 PY - 2015 SN - 978-80-554-1094-4 DO - https://doi.org/10.1016/j.matpr.2016.03.051 SP - 68 EP - 69 CY - Zilina AN - OPUS4-34491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -