TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - From insects to micro air vehicles - a comparison of reactive plume tracking strategies T2 - Intelligent autonomous systems 13 - Proceedings of the 13th international conference IAS-13 N2 - Insect behavior is a common source of inspiration for roboticists and computer scientists when designing gas-sensitive mobile robots. More specifically, tracking airborne odor plumes, and localization of distant gas sources are abilities that suit practical applications such as leak localization and emission monitoring. Gas sensing with mobile robots has been mostly addressed with ground-based platforms and under simplified conditions and thus, there exist a significant gap between the outstanding insect abilities and state-of-the-art robotics systems. As a step toward practical applications, we evaluated the performance of three biologically inspired plume tracking algorithms. The evaluation is carried out not only with computer simulations, but also with real-world experiments in which, a quadrocopter-based micro Unmanned Aerial Vehicle autonomously follows a methane trail toward the emitting source. Compared to ground robots, micro UAVs bring several advantages such as their superior steering capabilities and fewer mobility restrictions in complex terrains. The experimental evaluation shows that, under certain environmental conditions, insect like behavior in gas-sensitive UAVs is feasible in real-world environments. T2 - IAS13 - 13th International conference on intelligent autonomous systems CY - Padova, Italy DA - 2014-07-15 KW - Autonomous micro UAV KW - Mobile robot olfaction KW - Gas source localization KW - Reactive plume tracking KW - Biologically inspired robots PY - 2016 SN - 978-3-319-08338-4; 978-3-319-08337-7 DO - https://doi.org/10.1007/978-3-319-08338-4_110 SN - 2194-5357 SP - 1533 EP - 1548 PB - Springer Verlag CY - Berlin, Germany AN - OPUS4-31526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Werner, Klaus-Dieter A1 - Erdmann, Jessica A1 - Eggeringhaus, Bärbel A1 - Kammermeier, Michael A1 - Schukar, Marcus A1 - Basedau, Frank A1 - Bartholmai, Matthias A1 - Lazik, D. A1 - Ebert, Sebastian T1 - Setup of a large scale soil test field with CO2 injection for testing a novel distributed subsurface monitoring system for gas storage areas T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - One of the main unsolved issues of under-ground storages for, e.g., CO2, H2, and natural gas is the comprehensive surveillance of these areas with reasonable effort and costs. Conventional sensors (e.g., soil air probes or borehole probes), however, can only be used for punctual or locally limited measurements; further their application can cause structural influences (invasive application). In this paper, we describe in detail the setup of a CO2 injection soil test field. This test field will be used to enhance and validate an innovative ap-proach for distributed subsurface monitoring of gas storage areas. To the author’s knowledge, this is the first time that, for this purpose, a test field is built in an application relevant scale. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 KW - Large scale soil test field KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fiber optical sensing PY - 2014 SN - 978-3-00-046740-0 SP - 238 EP - 239 AN - OPUS4-31527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael T1 - Hopkinson bar method for temperature dependent testing and calibration of accelerometers T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - The measurement characteristics of every conventional accelerometer are temperature dependent - often to an extent which is highly relevant for the addressed application. For instance, at BAM Container drop tests are performed to investigate and evaluate the structural integrity of Containers for transport and storage of dangerous goods. Often, the test program includes drop tests at specific temperatures, also as part of approval procedures. The applied sensors are exposed to these test conditions and get influenced by them. Acceleration sensors show a considerable temperature influence on their fünction and characteristics. Particularly the damping mechanism of the seismic mass is a critical part. In regard to such applications, capable equipment and methods are required to consider and investigate this aspect in an adequate way. A fortiori as Manufacturer’s infonnation often is deficient. This study presents the setup and results of a method for testing and calibration of acceleration sensors under high dynamic irnpact. It combines a Hopkinson Bar with a temperature chamber. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 SP - 244 EP - 245 AN - OPUS4-31731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael A1 - Köppe, Enrico T1 - Erprobung eines Messsystems mit Datenbus und dezentraler Datenspeicherung für den Einsatz bei Fallprüfungen JF - Technisches Messen N2 - Zur Untersuchung der Sicherheit von Behältern für den Transport und die Lagerung von Gefahrstoffen und -gütern werden Fallprüfungen durchgeführt. Die Aufpralldynamik und die strukturmechanischen Einwirkungen auf den Behälter werden mittels Beschleunigungsaufnehmern und Dehnungsmessstreifen erfasst. Dabei kommen derzeit Vielkanalmesssysteme zum Einsatz, die eine Verkabelung jeder einzelnen Messstelle und somit das Mitfallen eines Kabelbaums erfordern, wodurch Probleme bei der Versuchsvorbereitung und Durchführung entstehen. Die Verwendung eines Messsystems mit Datenbus und dezentraler Datenspeicherung bietet diesbezüglich einen vielversprechenden Lösungsansatz. KW - Vielkanalmesssystem KW - Datenbus KW - Gefahrstoffe KW - Behälter KW - Fallprüfung KW - Hopkinsonstab KW - Multichannel measuring system KW - Data bus KW - Dangerous goods KW - Container KW - Drop test KW - Hopkinson bar PY - 2009 DO - https://doi.org/10.1524/teme.2009.0945 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 76 IS - 10 SP - 447 EP - 454 PB - Oldenbourg CY - München AN - OPUS4-20284 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Leak detection with linear soil gas sensors under field conditions - First experiences running a new measurement technique T2 - Proceedings of the IEEE Sensors 2016 N2 - A 400 m² soil test field with gas injection system was built up, which enables an experimental validation of linear gas sensors for specific applications and gases in an application-relevant scale. Several injection and soil watering experiments with carbon dioxide (CO2) at different days with varying boundary conditions were performed indicating the potential of the method for, e.g., rapid leakage detection with respect to Carbon Capture and Storage (CCS) issues. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Soil test field KW - Membrane-based linear gas sensor KW - Leak detection KW - Field conditions PY - 2016 SN - 978-1-4799-8287-5 SN - 1930-0395 SP - B-3-65, 757 EP - 759 PB - IEEE AN - OPUS4-38244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schukar, Vivien A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Westphal, Anja A1 - Sahre, Mario A1 - Gong, Xin A1 - Bartholmai, Matthias A1 - Beck, Uwe T1 - Magnetic field detection with an advanced FBG-based sensor device T2 - 30th Eurosensors Conference - EUROSENSORS 2016 N2 - A high-performance fiber Bragg grating-based (FBG) sensor device has been developed for the detection of small magnetic fields. Based on a smart multilayer jacket around the fibre over the physical length of the FBG, magnetic fields generated by rotating machine parts, power generators or power cable can be easily detected, analysed and evaluated. Consequently, this innovative, on-line and non-contact inspection method results in an increase in quality and reliability of high-performing machine parts, devices and cables. The basic physical principle is based on a magnetostrictive multilayer system that strains the high-resolution FBG element in presence of magnetic fields. Subsequently, a fixed relationship between induced magnetic field and wavelength change of the FBG element describes the characteristic sensitivity curve. Intensive tests regarding characterisation of this magnetic field FBG sensor have been carried out and its performance has been evaluated. T2 - 30th Eurosensors Conference, EUROSENSORS 2016 CY - Budapest, Hungary DA - 04.09.2016 KW - Fiber Bragg grating KW - Magnetostriction KW - Strain KW - Magnetic field PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376703 DO - https://doi.org/10.1016/j.proeng.2016.11.445 SN - 1877-7058 VL - 168 SP - 1270 EP - 1274 PB - Elsevier Ltd. AN - OPUS4-37670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Petrov, Sergej A1 - Bartholmai, Matthias A1 - Lazik, D. ED - Puente León, F. ED - Zagar, B. T1 - Aufbau eines großflächigen Testfeldes für verteilte Bodengassensorik und Untersuchung einer Monitoringmethode basierend auf Tomographie T1 - Setup of a large-scale test field for distributed soil gas sensors and testing of a monitoring method based on tomography JF - tm - Technisches Messen N2 - A 400 m² soil test field with gas injection system was built up for the purpose of large-scale validation, optimization, and characterization of a novel comprehensive monitoring method for underground gas storage areas. The method combines gas sensing technology with linear form factor for in-situ monitoring of gases in soil with the mapping capabilities of Computed Tomography (CT) to reconstruct time-series of gas distribution maps based on samples of orthogonally-aligned linear gas sensors. Several injection experiments with carbon dioxide (CO2) at different days with varying boundary conditions indicates the potential of the method for, e.g., rapid leakage detection with respect to Carbon Capture and Storage (CCS) issues. N2 - Zur Validierung, Optimierung und praxisnahen Demonstration eines flächendeckenden Monitoringverfahrens für Untergrundgasspeichern wurde ein 400 m² großes Testfeld mit Gasinjektionssystem auf dem BAM Testgelände Technische Sicherheit aufgebaut. Die Methode kombiniert verteilte, linienförmige Gassensorik für die In-situ-Überwachung von Gasen im Boden mit den Mapping-Fähigkeiten der Computertomographie (CT). Auf Basis von orthogonal zueinander ausgerichteten linearen Gassensoren können mit diesem Verfahren so Zeitreihen der Gasverteilung rekonstruiert werden. Experimente mit Kohlendioxid (CO2) zeigen das Potential des Verfahrens zur schnellen Lokalisierung von Leckagen auf. KW - Soil test field KW - Distributed linear sensor KW - Membrane-based gas sensing KW - Subsurface monitoring KW - Gas storage areas KW - Computed tomography PY - 2016 DO - https://doi.org/10.1515/teme-2016-0015 SN - 2196-7113 SN - 0171-8096 VL - 83 IS - 10 SP - 606 EP - 615 PB - Walter de Gruyter GmbH CY - Berlin, Deutschland AN - OPUS4-37653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Kammermeier, Michael A1 - Müller, Maximilian A1 - Strangfeld, Christoph T1 - Transmission characteristics of RFID sensor systems embedded in concrete T2 - Proceedings of the IEEE Sensors 2016 N2 - Completely embedded sensor systems for long-term operation offer innovative possibilities for structural health monitoring of concrete structures. Measuring of relevant parameters, e.g., temperature, humidity, or indication of corrosion can be performed with low energy sensors. This allows to implement passive RFID sensor systems without cable connection and battery, which are power supplied exclusively by the electromagnetic field from the external reader device. To evaluate characteristics and conditions of this concept, a systematical investigation of the transmission characteristics with variation of relevant parameters, as communication frequency, installation depth, type of concrete, moisture content, etc. is currently carried out in an interdisciplinary research project at BAM. First results are presented in this paper. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Embedded sensors KW - Energy harvesting KW - Wireless sensors KW - RFID sensors KW - Transmission characteristics KW - Structural health monitoring PY - 2016 SN - 978-1-4799-8287-5 SN - 1930-0395 SP - 1541 EP - 1543 PB - IEEE AN - OPUS4-38388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrov, Sergej A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Concept for investigating mechanical impacts on distributed subsurface gas monitoring T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - A multifunctional sensor in line shape was developed and introduced in previous work for measuring of gas concentrations, temperature change, and strain. A current field study focuses on a spatially distributed monitoring of subsurface CO2 gas storage sites in near real time. Mechanical impacts, e.g., caused by construction work, denudation, and seismic activity, can affect the integrity of underground gas storage sites. Thermal or moisture impacts, e.g., caused by weather conditions, can influence the gas distribution behavior. In this paper, we briefly describe the setup of a CO2 injection soil test field. This setup contains actuating elements for the investigation of mechanical and thermal impacts on distributed subsurface gas monitoring. A concept is given for evaluating these impacts and first experimental results are presented. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 PY - 2015 DO - https://doi.org/10.1016/j.matpr.2016.03.060 SN - 2214-7853 VL - 3 IS - 4 SP - 1124 EP - 1128 PB - Elsevier Science CY - Zilina AN - OPUS4-34489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Ebert, Sebastian A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Inverse calibration routine for linear soil gas sensors T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - Gas sensors in linear form based on the measuring principle of gas selective permeability through a membrane were developed and introduced for the detection and quantification of gas concentrations. A current field study focuses on measuring CO2 concentrations for a spatially distributed monitoring of subsurface CO2 gas storage sites in near real time. A 400 m(2) test site and a corresponding laboratory system were built up to characterize, validate, and optimize the sensor. A calibration routine was developed, which can be applied subsequently to underground installation. First measurement results indicate the potential of the method. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 PY - 2015 SN - 978-80-554-1094-4 DO - https://doi.org/10.1016/j.matpr.2016.03.051 SP - 68 EP - 69 CY - Zilina AN - OPUS4-34491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Lazik, D. T1 - Near real-time reconstruction of 2D soil gas distribution from a regular network of linear gas sensors T2 - Proceedings of the IEEE Sensors 2015 N2 - A monitoring method is introduced that creates, in near real-time, two-dimensional (2D) maps of the soil gas distribution. The method combines linear gas sensing technology for in-situ monitoring of gases in soil with the mapping capabilities of Computed Tomography (CT) to reconstruct spatial and temporal resolved gas distribution maps. A weighted iterative algebraic reconstruction method based on Maximum Likelihood with Expectation Maximization (MLEM) in combination with a source-by-source reconstruction approach is introduced that works with a sparse setup of orthogonally-aligned linear gas sensors. The reconstruction method successfully reduces artifact production, especially when multiple gas sources are present, allowing the discrimination between true and non-existing so-called ghost source locations. A first experimental test indicates the high potential of the proposed method for, e.g., rapid gas leak localization. T2 - IEEE Sensors 2015 CY - Busan, South Korea DA - 01.11.2015 KW - Distributed linear sensor KW - Membrane-based gas sensing KW - Subsurface monitoring KW - Gas storage areas KW - Computed tomography PY - 2015 SN - 978-1-4799-8202-8 SN - 1930-0395 SP - 1550 EP - 1553 PB - IEEE AN - OPUS4-34849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schukar, Vivien A1 - Gong, Xin A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe ED - Berghmans, F. ED - Mignani, A. G. T1 - Modelling and simulation of a fibre Bragg grating strain sensor based on a magnetostrictive actuator principle T2 - Optical Sensing and Detection IV N2 - A new concept for the self-diagnosis of embedded fiber Bragg grating (FBG) strain sensors was developed, simulated and experimentally tested. This concept is based on a magnetostrictive metallic layer directly coated on the fibre cladding over the grating segment of the FBG sensor, so that an on-demand external magnetic field in a millitesla scale can produce a controllable artificial strain as an indication signal for the remote optical interrogator. The relationship between the pre-defined magnetic field and its induced Bragg wavelength shift characterizes this validation concept. Any deviation of the local bonding state of the interfaces from the initial or/and any change of shear strain transferring mechanism from composite matrix to the optical fibre core will result in alterations in this sensitive relationship, and thus triggers an immediate alert for a further inspection. The finite element method is used to simulate the strain of this configuration as result of different values of the magnetic field in order to optimize the geometrical sensor parameters. The simulations are verified by experiments results. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. T2 - Optical Sensing and Detection IV CY - Brüssel, Belgium DA - 03.04.2016 KW - Fiber Bragg gratings KW - Actuators KW - Modeling and simulation KW - Finite element methods PY - 2016 SN - 9781510601444 DO - https://doi.org/10.1117/12.2224728 SN - 0277-786X SN - 1996-756X VL - 9899 SP - 9899-39 PB - SPIE Digital Library AN - OPUS4-38634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring JF - Materials Today: Proceedings N2 - In this paper, we introduce a nano aerial robot swarm for indoor air quality monitoring applications such as occupational health and safety of (industrial) workplaces. The concept combines a robotic swarm composing of nano Unmanned Aerial Vehicles (nano UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight metal oxide gas sensors for measuring the Total Volatile Organic Compound (TVOC) in ppb and estimating the eCO2 (equivalent calculated carbon-dioxide) concentration in ppm. TVOC is a measure for the indoor air quality. An indoor localization and positioning system will be used to estimate the absolute 3D position of the swarm like GPS. Based on this novel indoor air quality monitoring concept, the development and validation of new algorithms in the field of Mobile Robot Olfaction (MRO) are planned, namely gas source localization and gas distribution mapping. A test scenario will be built up to validate and optimize the gas-sensitive nano aerial robot swarm for the intended applications. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Nano aerial robot KW - UAV KW - Swarm KW - Indoor air quality KW - Monitoring KW - Concept PY - 2019 DO - https://doi.org/10.1016/j.matpr.2019.03.151 SN - 2214-7853 VL - 12 IS - 2 SP - 470 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Hofmann, Michael A1 - El Bari, N. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Wastewater monitoring by means of e-nose, VE-tongue, TD-GC-MS, and SPME-GC-MS JF - Talanta N2 - The presence of wastewater and air pollution has become an important risk factor for citizens, not only in terms of problems related to health risks, but also because of its negative impact on the country's image. For this reason, malodorous emission monitoring and control techniques are in high demand in urban areas and industries. The aim of this work is first to build an electronic nose (e-nose) and a Voltammetric Electronic tongue (VE-tongue) in order to study their ability to discriminate between polluted and clean environmental samples. Secondly, Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS), and Solid Phase Micro Extraction-Gas Chromatography–Mass Spectrometry (SPME-GC-MS) are utilized to explain this discrimination by identifying specific compounds from these samples. Indeed, the e-nose, consisted of metal oxide semiconductor gas sensors, is used for the assessment of the studied odorous air and headspace samples from water and wastewater sites. Moreover, the VE-tongue, based on metal electrodes, is utilized to determine the patterns of the sensor array responses, which serve as fingerprints profiles of the analyzed liquid samples. Chemometric tools, such as Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Support Vector Machines (SVMs) are operated for the processing of data from the e-nose and the VE-tongue. By using the both systems, the analyses of headspace and liquid samples from the seven sites allow better discrimination. To explain the cause of the obtained discrimination, TD-GC-MS and SPME-GC-MS analyses are well performed to identify compounds related sites. According to these outcomes, the proposed e-nose and VE-tongue are proved to be rapid and valuable tools for analysis of environmental polluted matrices. KW - Wastewater KW - Electronic nose KW - Voltammetric electronic tongue KW - Thermal desorption-gas chromatography-mass spectrometry KW - Solid phase micro extraction-gas chromatography–mass spectrometry PY - 2021 DO - https://doi.org/10.1016/j.talanta.2020.121450 VL - 221 SP - 121450 PB - Elsevier B.V. AN - OPUS4-51099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrov, Sergej A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Wosniok, Aleksander A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Nicoletto, G. ED - Pastrama, S.D. ED - Emri, I. T1 - Concept for investigating mechanical and thermal impacts on distributed subsurface gas monitoring JF - Materials Today: Proceedings N2 - A multifunctional sensor in line shape was developed and introduced in previous work for measuring of gas concentrations, temperature change, and strain. A current field study focuses on a spatially distributed monitoring of subsurface CO 2 gas storage sites in near real time. Mechanical impacts, e.g., caused by construction work, denudation, and seismic activity, can affect the integrity of underground gas storage sites. Thermal or moisture impacts, e.g., caused by weather conditions, can influence the gas Distribution behavior. In this paper, we briefly describe the setup of a CO 2 injection soil test field. This setup contains actuating elements for the investigation of mechanical and thermal impacts on distributed subsurface gas monitoring. A concept is given for evaluating these impacts and first experimental results are presented. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Linear sensor KW - Distributed sensor KW - Monitoring of CO 2 KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fibre optical sensing PY - 2016 DO - https://doi.org/10.1016/j.matpr.2016.03.060 SN - 2214-7853 VL - 3 IS - 4 SP - 1124 EP - 1128 PB - Elsevier Ltd. AN - OPUS4-35688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Kammermeier, Michael A1 - Koeppe, Tabea A1 - Werner, Klaus-Dieter ED - Nicoletto, G. ED - Pastrama, S.D. ED - Emri, I. T1 - High dynamic measurement of strain and acceleration using a multichannel measuring system with single cable serial connection JF - Materials Today: Proceedings N2 - Strain and acceleration measurement during high dynamic drop tests, e.g., of containments for dangerous goods is performed using high speed multichannel measuring systems. So far established and operated systems need a cable connection of every strain gauge and acceleration sensor with the measuring device, often counting up to a number of more than 100 cables, corresponding to the number of applied sensors. The result is a massive cable harness consisting of all single cables, which is difficult to handle and causes a number of practical problems. An innovative approach is proposed by using a single cable measuring system, consisting of measuring modules with data bus connection and local data acquisition. Promising results were presented in a previous study. This paper follows up with additional results from full-scale testing of a further enhanced single cable system for the application in drop tests. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Multichannel measuring KW - Single cable serial connection KW - Dangerous goods container KW - Drop test KW - High impact testing PY - 2016 DO - https://doi.org/10.1016/j.matpr.2016.03.023 SN - 2214-7853 VL - 3 IS - 4 SP - 931 EP - 935 PB - Elsevier Ltd. AN - OPUS4-35689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Ebert, S. A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Nicoletto, G. ED - Dan Pastrama, S. ED - Emri, I. T1 - Inverse calibration routine for linear soil gas sensors JF - Materials Today: Proceedings N2 - Gas sensors in linear form based on the measuring principle of gas selective permeability through a membrane were developed and introduced for the detection and quantification of gas concentrations. A current field study focuses on measuring CO2 concentrations for a spatially distributed monitoring of subsurface CO2 gas storage sites in near real time. A 400 m² test site and a corresponding laboratory system were built up to characterize, validate, and optimize the sensor. A calibration routine was developed, which can be applied subsequently to underground installation. First measurement results indicate the potential of the method. T2 - 32nd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Linear sensor KW - Distributed sensor KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Calibration PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S221478531600256X DO - https://doi.org/doi:10.1016/j.matpr.2016.03.051 SN - 2214-7853 VL - 3 IS - 4 SP - 1074 EP - 1078 PB - Elsevier Ltd. AN - OPUS4-35633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Daum, Werner A1 - Gong, Xin A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Schukar, Vivien A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe T1 - New self diagnostic fiber optical sensor technique for structural health monitoring T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - Fiber optic sensors have gained increasing importance in recent years and are well established in many areas of industrial applications. In this paper, we introduce a concept of a self-diagnostic fiber optic sensor. The presented sensor is to resolve the problems of embedded fiber optic sensors in complex structures and to enable the validation under operational conditions. For this purpose, different magnetostrictive coated fiber optic sensors were developed and various experiments were performed to verify their mode of operation and to determine the respective reproducibility. The measuring principle is illustrated by obtained experimental results, which showed a change in wavelength from 1 pm at a magnetic field strength change of 0.25 mT. In addition, the temperature characteristics of the implemented magnetostrictive sensor were analyzed and an experimental factor of 1.5 compared to a reference fiber optic sensor was determined. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 PY - 2015 SN - 978-80-554-1094-4 SP - 1 EP - 2 CY - Zilina AN - OPUS4-35173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lazik, D. A1 - Ebert, S. A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Characteristic length measurement of a subsurface gas anomaly - A monitoring approach for heterogeneous flow path distributions JF - International Journal of Greenhouse Gas Control N2 - Geogenic gases from natural sources, carbon dioxide (CO2) from a geological repository (carbon capture and storage - CCS) or a leaking gas pipeline can present serious risks in industrial and urban areas. To extend the lead time for risk treatment in such critical regions, reliable detection of gases within the shallow subsurface is required to observe critical gas accumulations before degassing into the atmosphere. A near real-time monitoring approach is introduced to determine the volumetric expansion of a leakinggas in the subsurface. Considering the pressure relaxation with the ambient air pressure, the approach enables the forecasting of the final size of a pressurized gas body in terms of characteristic lengths. According to theoretical basics, such a characteristic length, which enables us to perform a gas (safety) measurement based on a purely geometrical measure, behaves independently of subsurface properties,i.e., it enables a reliable quantification of the escaping gas irrespective of its heterogeneous or changingflow path distribution. A field test for a 10 l/min pinhole leakage injected into a 10 m long, 0.4 m wide, 0.95 m deep soil-filled trench that was equipped with linear sensors shows the lateral-vertical volumetric gas expansion along these sensors, and demonstrates the applicability of the characteristic length approach. KW - Monitoring KW - Carbon capture and storage KW - Leakage KW - Quantification KW - Subsurface KW - CO2 PY - 2016 DO - https://doi.org/10.1016/j.ijggc.2016.02.008 SN - 1750-5836 VL - 2016 IS - 47 SP - 330 EP - 341 PB - Elsevier B.V. AN - OPUS4-35425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit JF - Sensors and actuators A: Physical N2 - This paper presents an approach for a quadrocoper-based micro unmanned aerial vehicle (UAV) that estimates the wind vector (speed and direction) in real-time based on measurement data of its on-board sensors only. This method does not need any additional airspeed sensor or dedicated anemometer, and thus the micro UAV's valuable payload remains free for other sensors. Wind tunnel and field tests were used to evaluate the performance of the approach. In order to quantify its accuracy, experiments are presented where data was collected with an anemometer placed in an open field with the micro UAV in flight following a predefined trajectory around the anemometer and hovering at a defined position close to it. KW - Micro unmanned aerial vehicle (UAV) KW - Quadrocopter KW - Real-time KW - Inertial measurement unit (IMU) KW - Airspeed calibration KW - Wind estimation (speed and direction) PY - 2015 DO - https://doi.org/10.1016/j.sna.2015.09.036 SN - 0924-4247 VL - 235 SP - 300 EP - 310 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-34737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -