TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Bartholmai, Matthias A1 - Neubert, Dietmar A1 - Schriever, Robert T1 - TG-MS and TG-FTIR applied for an unambiguous thermal analysis of intumescent coatings N2 - Thermogravimetry (TG), thermogravimetry coupled with mass spectroscopy (TG-MS) and thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR) were used to characterise the thermo-oxidative behaviour of two intumescent coating materials. The temperature dependence, the corresponding volatile products and the amount of residue of the different processes were determined. Using both TG-MS and TG-FTIR results in an unambiguous interpretation of the volatile products. Characteristics such as the influence of endothermic reactions, the release of non-flammable gases, the dehydrogenation enhancing the char formation and the stability of the cellular char were discussed in detail. It was demonstrated, that TG, TG-MS and TG-FTIR are powerful methods to investigate mechanisms in intumescent coatings and that they are suitable methods in respect to quality assurance and unambiguous identification of such materials. KW - Intumescent coating materials KW - TG KW - TG-FTIR KW - TG-MS PY - 2002 DO - https://doi.org/10.1023/A:1022272707412 SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 70 IS - 3 SP - 897 EP - 909 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-2133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, A. A1 - Pütz, D. A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Wendschuh-Josties, M. T1 - Combustion behaviour of epoxide based nanocomposites with ammonium and phosponium bentonites N2 - The influence of different organobentonites on the decomposition and the combustion behaviour of an epoxy resin were examined. The epoxy resin is a cationically polymerised cycloaliphatic epoxy resin flexibilised with poly(tetrahydrofuran) (PTHF), with hydroxyl endgroups. The bentonite was modified with either an ammonium or a phosphonium salt. The thermal decomposition of the PTHF induced by the initiator, used for the cationic polymerisation, did neither take place for the nanocomposite based on the ammonium bentonite nor for that based on the phosphonium bentonite. This improved decomposition characteristic lead to a larger time to ignition for both kinds of nanocomposites compared to the not modified polymer, which is not the case for other polymer/clay nanocomposites described in the literature. The fire behaviour was investigated using limiting oxygen index (LOI), a horizontal burner test and a cone calorimeter. The forced flaming conditions in the cone calorimeter were varied using different external heat fluxes between 30 and 70 kW · m-2. The fire behaviour of the nanocomposites was improved in comparison to the polymer, and phosphonium bentonite was superior to ammonium bentonite. The main mechanism is a barrier formation resulting in a reduction of the fire growth rate, which was more pronounced in the case of high external heat fluxes. KW - Cationic polymerisation KW - Clay KW - Combustion KW - Degradation KW - Epoxide KW - Nanocomposite PY - 2003 DO - https://doi.org/10.1002/macp.200300047 SN - 1022-1352 SN - 1521-3935 VL - 204 IS - 18 SP - 2247 EP - 2257 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schriever, Robert A1 - Schartel, Bernhard T1 - Influence of external heat flux and coating thickness on the thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis N2 - Polymeric intumescent coatings are fire protective materials that increase their thermal resistance when exposed to high temperatures to prevent building structures from damage. The idea of the investigation was to develop a simple test method to determine the time dependent thermal conductivity of intumescent coatings. Therefore steel plates were coated with two different intumescent systems. During cone calorimeter tests the temperature at the back side of the coated plates was measured. These results were used to calculate the time dependent thermal resistance of the protective layer with the simulation program IOPT2D for different external heat fluxes and different layer thickness. KW - Intumescent coatings KW - Thermal resistance KW - Cone calorimetry KW - Numerical analysis PY - 2003 DO - https://doi.org/10.1002/fam.823 SN - 0308-0501 SN - 1099-1018 VL - 27 IS - 4 SP - 151 EP - 162 PB - Heyden CY - London AN - OPUS4-2633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - Comprehensive Fire Behaviour Assessment of Nanocomposites T2 - 9th European Meeting on Fire Retardancy and Protection of Materials, FRPM '03 CY - Lille, France DA - 2003-09-17 PY - 2003 AN - OPUS4-4615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system N2 - Polymeric nanocomposites are discussed as one of the most promising advanced materials whose nanoscale effects can be exploited for industry. Layered silicate polypropylene-graft-maleic anhydride nanocomposites are investigated as a model to clarify the potential of such materials in terms of fire retardancy. The nanostructure is characterized using transmission electron microscopy (TEM) and shear viscosity. The fire behavior is characterized using different external heat fluxes in cone calorimeter, limiting oxygen index and UL 94 classification. A comprehensive fire behavior characterization is presented which enables an assessment of the materials’ potential with respect to different fire scenarios and fire tests. The influence of morphology and the active mechanisms are discussed, such as barrier formation and changed melt viscosity. To our knowledge, it is the first attempt to illuminate the concept’s strengths, such as the reduction of flame spread, and weaknesses, such as the lack of influence on ignitability, in a clear, comprehensive and detailed manner. KW - Fire retardancy KW - Nanocomposites KW - Cone Calorimeter KW - LOI KW - UL94 KW - Flame retardance KW - poly(propylene) (PP) KW - Organoclay PY - 2004 UR - http://www3.interscience.wiley.com/cgi-bin/jissue/109085890 SN - 1042-7147 SN - 1099-1581 VL - 15 IS - 7 SP - 355 EP - 364 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-3706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Knoll, Uta T1 - Some comments on the use of cone calorimeter data N2 - The cone calorimeter has become one of the most important and widely used instruments for the research and development of fire retarded polymeric materials. The paper addresses three important ways in which the principal setup influences the results — factors which sometimes do not receive due consideration when drawing conclusions. The paper discusses in detail the impact on cone calorimeter results of the choice of external heat flux, the influence on the peak of heat release rate of sample thickness and thermal feedback from the back of the sample, and the influence on irradiance of the horizontal and vertical distances from the cone heater. KW - Cone Calorimeter KW - Fire retardancy KW - Fire testing KW - Nanocomposites KW - Intumescence PY - 2005 DO - https://doi.org/10.1016/j.polymdegradstab.2004.12.016 SN - 0141-3910 SN - 1873-2321 VL - 88 IS - 3 SP - 540 EP - 547 PB - Applied Science Publ. CY - London AN - OPUS4-7211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Braun, Ulrike ED - Le Bras, M. T1 - Barrier effects for the fire retardancy of polymers T2 - 9th European Meeting on Fire Retardancy and Protection of Materials CY - Lille, France DA - 2003-09-15 KW - Fire retardancy KW - Nanocomposites KW - Red Phosphorus KW - Mg(OH)2 KW - Cone Calorimeter KW - LOI PY - 2005 SN - 0-85404-582-1 VL - 9 SP - 264 EP - 275 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-7377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - A new approach for assessing the performance of intumescent coatings T2 - 10th European Meeting on Fire Retardancy and Protection of Materials (10th European Conference on Fire Retardant Polymers), FRPM '05, BAM CY - Berlin, Germany DA - 2005-09-07 PY - 2005 AN - OPUS4-6363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Braun, Ulrike T1 - Residue, Charring and Intumescence N2 - The exploration of condensed phase mechanisms such as charring and intumescence has been pushed forward in the last decades, since it is believed that focusing on these concepts will bring materials closer to an efficient and ecologically friendly fire retardancy. They promise to concentrate efficient fire retardancy at the key position between pyrolysis zone and gas phase. Examples of residue/char forming and intumescent materials are used to illustrate the influence of mass and heat barrier effects on the fire behavior of materials and general results are presented. A comprehensive understanding of the mechanisms and structure-property relationships in fire retardancy is presented. KW - Fire retardancy KW - Nanocomposites KW - Red Phosphorus KW - Intumescence KW - Cone Calorimeter PY - 2006 SN - 1-59623-221-8 VL - XV SP - 15 EP - 21 PB - BCC Research CY - Norwalk, Conn. AN - OPUS4-4068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Knoll, Uta T1 - Some comments on the main fire retardancy mechanisms in polymer nanocomposites N2 - Barrier formation and increasing the melt viscosity are addressed as the two main general fire retardancy mechanisms of polymer nanocomposites. They result in specific impacts on fire properties that consequentially cause varying flame retardancy efficiency in different fire tests. The barrier formation retards mainly flame spread (peak of heat release rate) in developing fires, but does not reduce fire load (total heat evolved), ignitability or flammability (limiting oxygen index, UL 94). Furthermore, this flame retardancy effect increases with increasing irradiation and vanishes with decreasing irradiation. The increased melt viscosity prevents dripping, which is beneficial or disadvantageous depending on the fire test used. In some test, it become the dominant influence, transforming self-extinguishing samples into flammable materials or causing wicking. Advantages and the limits are sketched comprehensively for exploiting the main general fire retardancy mechanisms of polymer nanocomposites. It is concluded that barrier formation and changing the melt viscosity in nanocomposites are not sufficient for most applications, but must be accompanied by additional mechanisms in special systems or in combination with other flame retardants. KW - Flame retardance KW - Nanocomposites KW - Organoclay KW - Cone calorimeter KW - Flammability PY - 2006 DO - https://doi.org/10.1002/pat.792 SN - 1042-7147 SN - 1099-1581 VL - 17 IS - 9-10 SP - 772 EP - 777 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-13868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Bartholmai, Matthias A1 - Goering, Harald A1 - Neubert, Dietmar A1 - Pötschke, P. T1 - Mechanical, Thermal, and Fire Behavior of Bisphenol A Polycarbonate/Multiwall Carbon Nanotube Nanocomposites N2 - Nanocomposites of bisphenol A polycarbonate with 2, 4, 6, and 15 wt% multiwall carbon nanotubes (MWNT) and their use in fire retardancy are investigated. Their thermal behavior and pyrolysis are characterized using thermogravimetry, differential scanning calorimeter, oscillatory shear rheology, and dynamic mechanical analysis. The flammability is addressed using LOI and UL 94; the fire behavior, with a cone calorimeter using different irradiation. With increasing MWNT content the storage modulus is increased (10-20%) and melt viscosity increases by several orders of magnitude, particularly for low shear rates. The melt flow, dripping, and deformation during fire are hindered, which influences UL 94 and cone calorimeter results. The peak heat release rate is reduced up to 40-50% due to an improved barrier for small amounts (2 wt%) of MWNT and for low irradiation, whereas the effect is reduced for increasing irradiation and nearly vanishes for increasing filling. Adjuvant but also deleterious mechanisms result in the complex dependency on the MWNT content. Significant flame retardancy effects are specific and limited to only some fire properties. This study allows the materials' potential for implementation in different fire scenarios and tests to be assessed and provides insight into active mechanisms. KW - Flame retardancy KW - Nanocomposite KW - Carbon multiwall nanotube (MWNT) KW - Cone Caorimeter KW - Flammability PY - 2008 DO - https://doi.org/10.1002/pen.20932 SN - 0032-3888 SN - 1548-2634 VL - 48 IS - 1 SP - 149 EP - 158 PB - Wiley CY - Hoboken, NY AN - OPUS4-16365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Köppe, Enrico ED - Urs Meier, ED - Bernadette Havranek, ED - Masoud Motavalli, T1 - Wireless sensor network for long-term structural health monitoring of buildings and infrastructures N2 - Damage commonly occurs in buildings when a component fails suddenly with a partial or total collapse as a consequence. This type of event leads to serious damage to property and if it is a bridge or a large hall, then people in particular are at risk. The often great age of bridges and the increasing volume of traffic (particularly heavy traffic) which they are expected to carry are in clear contradiction to each other. Thus the probability increases that the loadbearing capacity of a bridge decreases rapidly and often unnoticed with sometimes dire consequences. In order to prevent such accidents, the Federal Institute for Materials Research and Testing is currently developing a special radio-based, self-configuring measuring system in cooperation with the Berlin-based ScatterWeb Company. This measuring system consists of a number of identically designed sensor nodes which are self-sustaining, need no wiring, can act as both transmitters and receivers and are equipped with a special sensor technology making long-term monitoring of buildings or engineering facilities possible. The sensor unit uses strain gauges for stress analysis and contains interfaces for additional sensors. The system in particular applies to buildings and structures for transport and traffic and large-scale industrial facilities, where a subsequent wiring installation is difficult or impossible. T2 - 4th International conference on structural health monitoring of intelligent infrastructure CY - Zurich, Switzerland DA - 2009-07-22 KW - Funksensorik KW - Sensornetzwerk KW - Schadensfrüherkennung KW - Strukturüberwachung PY - 2009 IS - Paper 365 SP - 1 EP - 5 AN - OPUS4-19748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. ED - Fujita, H. ED - Sasaki, J. T1 - Micro-drone for gas measurement in hazardous scenarios via remote sensing T2 - 6th WSEAS International conference on REMOTE SENSING (REMOTE '10) CY - Iwate, Japan DA - 2010-10-04 KW - Remote sensing KW - Micro-drone KW - UAV KW - Gas measurement KW - Emission control KW - Data mapping KW - Monitoring KW - Plume tracking PY - 2010 SN - 978-960-474-233-2 SN - 1792-5088 SP - 149 EP - 152 PB - WSEAS Press AN - OPUS4-22275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Thomas A1 - Pettelkau, Alexander A1 - Hohendorf, Stefan A1 - Damm, David A1 - Bartholmai, Matthias A1 - Farahbakhsh, Mahin ED - Goedecke, T. T1 - Securing of dangerous goods transports by RFID-tags with sensor-functionality and integrated database "GEFAHRGUT" information (SIGRID) N2 - The project SIGRID investigates and assesses possibilities to enhance the safety and security of dangerous goods transports through the use of the latest RFID-technology. This technology can be used to greatly enhance the transparency of the supply chain and aid logistics companies in complying with regulations. In the context of SIGRID, customized RFID-Sensor-Tags have been developed that monitor dangerous goods during transport and help to prevent hazards by allowing timely countermeasures. In the case of a dangerous goods accident, the available information about the type, amount and condition of the dangerous goods can be used to accurately inform the relief forces. Unavailable or inaccurate information represents a significant problem for the relief forces. This often leads to a delay in the rescue operation, because relief forces must be aware of the substances involved to protect themselves effectively against them. SIGRID aims to close this information gap. To verify the practicability of the underlying concepts, a demonstrator will be build and tests of realistic scenarios will be conducted. T2 - 17th IAPRI World conference on packaging CY - Tianjin, China DA - 2010-10-12 KW - Dangerous goods KW - Sensors KW - Monitoring KW - RFID KW - WLAN KW - Electronic transport documents PY - 2010 SN - 978-1-935068-36-5 SP - 639 EP - 642 PB - Scientific research publishing AN - OPUS4-22313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Wiggerich, B. A1 - Bartholmai, Matthias T1 - Micro-drone for the characterization and self-optimizing search of hazardous gaseous substance sources T2 - IMAV 2010 - International micro air vehicle conference and flight competition CY - Braunschweig, Germany DA - 2010-07-06 KW - Mikrodrohne KW - Quadrokopter KW - Robotik KW - Suche und Lokalisierung von gasförmigen Gefahrstoffquellen PY - 2010 SP - 1 EP - 5 AN - OPUS4-22051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Schiller, J.H. A1 - Wiggerich, B. A1 - Manolov, Manol T1 - Micro-drone for the characterization and self-optimizing search of hazardous gaseous substance sources: A new approach to determine wind speed and direction N2 - BAM Federal Institute for Materials Research and Testing, in cooperation with the AirRobot GmbH & Co. KG company, has developed a flying remote-controlled measuring system. The system is capable of operating in a variety of scenarios of gas emissions, e.g. exhaust gas from chimneys, flue gas in a fire, gas emissions in the case of an accident of chemical or hazardous goods or in the case of a terrorist act involving toxic gases. Thus it can measure the gas concentration in the immediate vicinity of the object which causes the emission. A further stage of extension is to enhance the system for plume tracking and identification of sources of hazardous gases. T2 - ROSE 2010 - IEEE International workshop on robotic and sensors environments CY - Phoenix, Arizona, USA DA - 2010-10-15 KW - Autonomous robot KW - UAV KW - Quadrocopter KW - Mobile sensing system KW - Chemical sensing KW - Gas sensors KW - Chemical source localization KW - Plume tracking KW - Anemometric sensor KW - Wind speed and direction PY - 2010 SN - 978-1-4244-7146-1 DO - https://doi.org/10.1109/ROSE.2010.5675265 IS - Session 1 - Intelligent Sensing SP - 1 EP - 6 AN - OPUS4-22189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Schiller, J.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - An artificial potential field based sampling strategy for a gas-sensitive micro-drone N2 - This paper presents a sampling strategy for mobile gas sensors. Sampling points are selected using a modified artificial potential field (APF) approach, which balances multiple criteria to direct sensor measurements towards locations of high mean concentration, high concentration variance and areas for which the uncertainty about the gas distribution model is still large. By selecting in each step the most often suggested close-by measurement location, the proposed approach introduces a locality constraint that allows planning suitable paths for mobile gas sensors. Initial results in simulation and in real-world experiments with a gas-sensitive micro-drone demonstrate the suitability of the proposed sampling strategy for gas distribution mapping and its use for gas source localization. T2 - IEEE/RSJ International conference on intelligent robots and systems (IROS '11) / Workshop on robotics for environmental monitoring (WREM2011) CY - San Francisco, CA, USA DA - 25.09.2011 KW - Autonomous UAV KW - Chemical sensing KW - Gas distribution modelling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Quadrocopter KW - Sensor planning KW - Artificial potential field PY - 2011 SP - 34 EP - 38 AN - OPUS4-24537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico A1 - Bartholmai, Matthias ED - Tsamis, C. ED - Kaltsas, G. T1 - Wireless sensor network with temperature compensated measuring technology for long-term structural health monitoring of buildings and infrastructures N2 - Damage to buildings occurs if a construction component fails. The result is a partial or total collapse which can be dangerous for people for example if it's a bridge or a large hall. The collapse of the terminal building at the Airport Charles de Gaulle in Paris and the damage at the historic City Archives of Cologne are typical examples of such accidents. Another problem is the contradiction of the increasing volume of traffic (particularly heavy traffic) and the great age of bridges. The probability increases that the load-bearing capacity of a bridge decreases. For example the collapses of the Mississippi Bridge and of the Inntal Motorway Bridge can be seen as results. Therefore it is necessary to control endangered structures during their life span. In order to prevent these kinds of accidents, the Federal Institute for Materials Research and Testing developed a radio-based, self-configuring measuring system in cooperation with the ScatterWeb Company, Berlin (Germany). This measuring system consists of identically designed sensor modules which are self-sustaining, wireless, act as transmitters and receivers and are equipped with a special sensor technology for long-term monitoring of buildings or engineering facilities. The sensor unit uses strain gauges for stress analysis and contains interfaces for additional sensors. The system in particular applies to buildings and structures for transport and traffic and large-scale industrial facilities, where a subsequent wiring installation is difficult or impossible. T2 - Eurosensors XXV CY - Athens, Greece DA - 04.09.2011 KW - Multi-Hop WSN KW - SHM KW - Temperature and Frequency Compensation KW - Funksensorik KW - Sensornetzwerk KW - Multihop KW - Strukturüberwachung KW - Temperaturkompensation PY - 2011 UR - http://www.sciencedirect.com/science/article/pii/S1877705811059236 IS - Paper 1197 SP - 1 EP - 5 PB - Elsevier AN - OPUS4-24401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Liers, A. A1 - Schiller, J. T1 - Tracking persons using a radio-based multi-sensor system N2 - A multi-sensor system for 3D localization was developed and named BodyGuard. It combines body movement sensing and a guard system for the tracking and recording of the status of persons. BodyGuard was designed to monitor and transmit the movement of a person radio-based and to transform that data into a spatial coordinate. This paper describes how the BodyGuard system works, what components the system consists of, how the individual sensor data is converted into 3D motion data, with which algorithms the individual sensors are processed, how individual errors are compensated and how the sensor data are fused into a 3D Model. T2 - IPIN 2011 - International conference on indoor positioning and indoor navigation CY - Guimaraes, Portugal DA - 21.09.2011 KW - Wireless sensor network (WSN) KW - Embedded systems KW - Sensor calibration and validation KW - Person tracking KW - Inertial navigation system KW - Inertial measurement unit PY - 2011 SP - 1 EP - 4 AN - OPUS4-24402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V.H. A1 - Bartholmai, Matthias T1 - Adaptive gas source localization strategies and gas distribution mapping using a gas-sensitive micro-drone T2 - 16. GMA/ITG-Fachtagung 'Sensoren und Messsysteme' CY - Nürnberg, Germany DA - 2012-05-22 KW - Anemotaxis KW - Chemotaxis KW - Micro UAV KW - Bio-inspired KW - Chemical sensing KW - Gas distribution modeling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Odor localization KW - Olfaction KW - Plume tracking KW - Quadrocopter PY - 2012 SN - 978-3-9813484-0-8 DO - https://doi.org/10.5162/sensoren2012/P5.4 SP - 800 EP - 809 CY - Wunstorf AN - OPUS4-26004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -