TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Werner, Klaus-Dieter A1 - Erdmann, Jessica A1 - Eggeringhaus, Bärbel A1 - Kammermeier, Michael A1 - Schukar, Marcus A1 - Basedau, Frank A1 - Bartholmai, Matthias A1 - Lazik, D. A1 - Ebert, Sebastian T1 - Setup of a large scale soil test field with CO2 injection for testing a novel distributed subsurface monitoring system for gas storage areas T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - One of the main unsolved issues of under-ground storages for, e.g., CO2, H2, and natural gas is the comprehensive surveillance of these areas with reasonable effort and costs. Conventional sensors (e.g., soil air probes or borehole probes), however, can only be used for punctual or locally limited measurements; further their application can cause structural influences (invasive application). In this paper, we describe in detail the setup of a CO2 injection soil test field. This test field will be used to enhance and validate an innovative ap-proach for distributed subsurface monitoring of gas storage areas. To the author’s knowledge, this is the first time that, for this purpose, a test field is built in an application relevant scale. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 KW - Large scale soil test field KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fiber optical sensing PY - 2014 SN - 978-3-00-046740-0 SP - 238 EP - 239 AN - OPUS4-31527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias T1 - Feasibility Study for Safe Workplaces through automation and digitalization technology with redesigned Smart Sensors and LoRaWAN Monitoring System T2 - SMSI 2021 Proceedings N2 - This project addresses the application of safe and healthy workplaces in offices, chemical laboratories and other workplaces where indoor air quality plays an important role. The LoRaWAN (Long Range Wide Area Network) is used as a communication interface to make sensor data globally accessible. The objectives of the project are to create a sensor node and an online and offline system that collects the data from the sensor nodes and stores it on a local server, in a cloud, and also locally on the node to prevent communication failures. An important point in this project is the development of the sensor nodes and the placement of these in the premises, thus no development work is involved in Building the infrastructure. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Smart sensors KW - Air quality monitoring KW - LoRaWAN KW - VOC KW - Multisensor system PY - 2021 SP - 230 EP - 231 AN - OPUS4-52649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Gkertsos, Aris A1 - Neumann, Patrick P. A1 - Bell, Jérémy A1 - Bartholmai, Matthias T1 - Wireless Mobile Sensor Device for in-situ Measurements with Multiple Fluorescent Sensors T2 - Proceedings of the IEEE Sensors 2018 N2 - This paper describes a wireless mobile prototype able to perform optical measurements by means of a miniatur-ized spectrometer for low light analysis, e.g. fluorescent sensors. Evaluations, calculations, calibration management and result display are performed by a computer or a standard tablet. The device was designed primarily to detect traces of oil in drinking or ground water and for the analyses of crude oils. However, it can also address a wide range of fluorescent sensors. The fast and user-friendly inspection of water quality or oil properties, as well as the adaptability and mobility, make the device attractive for a variety of users. Further application areas could be easily imple-mented by adapting the optics and the software (database, data processing and calibration plots, etc.) T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Wireless mobile sensor device KW - Fluorescent sensor KW - Embedded system KW - Water quality KW - Oil PY - 2018 SN - 978-1-5386-4707-3 SP - 1067 EP - 1070 PB - IEEE CY - New Delhi, India AN - OPUS4-46556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Gawlitza, Kornelia A1 - Bell, Jérémy A1 - Mansurova, Maria A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Semi-automatic Gas Measurement Device Based on Fluorescent Multi-gas Sensors T2 - Proceedings of the IEEE Sensors 2019 N2 - This paper describes the development of a semi-automatic gas measurement device presenting potentially a broad range of applications, noteworthy in the agricultural sector. Non-reversible fluorescent molecular sensors were designed and syn-thesized. Upon, integration into a hydrogel matrix with an optimal ratio of co-solvents, the sensors reacting selectively to ammonia were illuminated by excitation light to produce a concentration-correlated fluorescence emission. An automated mechanical-elec-trical device initiates a given gas mixture and thus simulates con-centrations similar to a threshold value. The aim of this project is to develop a sensor or a low-cost method which can monitor low concentrations of harmful gases and aid in their elimination or regulation in livestock housing, barns or stables. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - gas analysis KW - fluorescence KW - embedded sensor KW - spectroscopy KW - environment KW - agricultural economy PY - 2019 SN - 978-1-7281-1634-1 SP - 88 EP - 92 PB - IEEE AN - OPUS4-49506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Tiebe, Carlo A1 - Bell, Jérémy A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Semi-automatic Measurement Device for Long-Term Monitoring of Ammonia in Gas Phase T2 - SMSI 2021 Proceedings N2 - In the present paper the development of a semi-automated device for long-term monitoring of gaseous ammonia is described. A sensor material was produced that changes its optical properties in the pres-ence of low concentrations of ammonia in air. The implementation into an electronic device enables precise, simple, economic and fast monitoring of low concentrations of harmful gases, like ammonia, and hence can help to improve the climate monitoring in livestock housing, barns or stables. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Spectroscopy KW - Embedded sensor KW - Environment KW - Air quality PY - 2021 SP - 133 EP - 134 AN - OPUS4-52576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Johann, Sergej A1 - Mansurova, M. A1 - Kohlhoff, Harald A1 - Tiebe, Carlo A1 - Bell, Jérémy A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Semi-automatic Measurement Device for Long-Term Monitoring of Ammonia in Gas Phase T2 - SMSI 2020 Proceedings N2 - The present paper describes the development of a sensor material that changes its fluorescence in the presence of gaseous ammonia in a relevant concentration range. The implementation into a semi-automatic gas measurement device enables low-cost, precise, simple and fast monitoring of low con-centrations of harmful gases, like ammonia, and hence can help to improve the climate monitoring in livestock housing, barns or stables. T2 - SMSI 2020 CY - Meeting was canceled KW - Spectroscopy KW - Emmbedded sensor KW - Environment KW - Air quality PY - 2020 DO - https://doi.org/10.5162/SMSI2020/B5.4 SP - 133 EP - 134 AN - OPUS4-50867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kohlhoff, Harald A1 - Helmerich, Rosemarie A1 - Daum, Werner ED - Aulova, Alexandra ED - Rogelj Ritonja, A. ED - Emri, I. T1 - Long-Term measurement of vertical displacements at the outer concrete bridges of the Berlin Main Station T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics - BOOK OF ABSTRACTS N2 - Berlin Main Station is the largest multi-level station in Europe. Its daily passenger number amounts to over 300.000. Structures built for such a large number of people require a high-level safety standard. The station was built on the inner city site of the historic Lehrter Bahnhof. The conditions for building and start of operation were challenging by several reasons. The typical sandy ground with a high level of groundwater makes the permanent static stability of such a complex structure difficult. Several completed, ongoing, and planned construction activities in the immediate vicinity of the station influence the ground settlement of the whole area. On basis of the structural design an impact prediction was calculated, which expected certain vertical displacements particularly between the single columns of the outer concrete bridges of the building. These columns support the glass roof construction, which only allows a defined limit of displacement. In order to avoid damage, a concept for monitoring and adjusting potentially occurring displacements was developed for installation at the outer bridges of the station. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Berlin Main Station KW - Differential displacements KW - Hydraulic levelling system KW - Laser-based displacement measuring system KW - Monitoring KW - Strain measurements PY - 2016 SN - 978-961-94081-0-0 SP - 166 EP - 167 CY - Ljubljana AN - OPUS4-37646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Daum, Werner T1 - Multi-sensor systems for safety-related monitoring T2 - Sensor 2013 - 16th International conference on sensors and measurement technology (Proceedings) T2 - Sensor 2013 - 16th International conference on sensors and measurement technology CY - Nürnberg, Germany DA - 2013-05-14 KW - Multi-sensor system KW - Condition monitoring KW - Safety management KW - Hazardous scenarios KW - Data-fusion PY - 2013 SN - 978-3-9813484-3-9 DO - https://doi.org/10.5162/sensor2013/B5.2 N1 - Serientitel: AMA Conferences – Series title: AMA Conferences SP - 268 EP - 272 AN - OPUS4-28518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -