TY - JOUR A1 - Schukar, Vivien A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Mitzkus, Anja A1 - Gong, Xin A1 - Sahre, Mario A1 - Bartholmai, Matthias A1 - Beck, Uwe ED - Emri, Igor T1 - A contribution to intelligent automatic validation of structure-integrated fibre optic strain sensors N2 - An auto-validation tool for the reliability quantification of materials integrated fiber Bragg grating (FBG) strain sensors have been developed and tested. The FBG strain sensor was jacketed with a magnetostrictive layer based on iron-nickel which, when excited by a specific magnetic field, adds an artificial strain to the sensor. The fixed relationship between magnetic induction and wavelength shift of the FBG strain sensor characterizes the bond strength and adhesion between the sensor and the surrounding structure. Due to an easily applicable magnetic field, it is possible to validate the sensor performance in a non-contact, fast way without disturbing the data-acquisition process. T2 - 33nd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Fiber Bragg grating KW - Self-diagnosis KW - Magnetostriction KW - Strain KW - Auto-validation PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S2214785317308489 U6 - https://doi.org/10.1016/j.matpr.2017.06.073 SN - 2214-7853 VL - 4 IS - 5, Part 1 SP - 5935 EP - 5939 PB - Elsevier Ltd. AN - OPUS4-41583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Schnürmacher, M. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - A probabilistic gas patch path prediction approach for airborne gas source localization in non-uniform wind fields N2 - In this paper, we show that a micro unmanned aerial vehicle (UAV) equipped with commercially available gas sensors can address environmental monitoring and gas source localization (GSL) tasks. To account for the challenges of gas sensing under real-world conditions, we present a probabilistic approach to GSL that is based on a particle filter (PF). Simulation and real-world experiments demonstrate the suitability of this algorithm for micro UAV platforms. KW - Autonomous micro UAV KW - Chemical and wind sensing KW - Gas source localization KW - Particle filter PY - 2014 U6 - https://doi.org/10.1166/sl.2014.3168 SN - 1546-198X SN - 1546-1971 VL - 12 IS - 6/7 SP - 1113 EP - 1118 PB - American Scientific Publishers (ASP) CY - Stevenson Ranch, CA, USA AN - OPUS4-31525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. T1 - Adaptive ortsaufgelöste Gaskonzentrationsmessung mit einer Mikrodrohne KW - Gasmessung KW - Gasemission KW - Emissionskontrolle KW - Windvektor KW - Mikrodrohne KW - Data-Mapping KW - Gas measurement KW - Gas emission KW - Emission control KW - Wind vector KW - Micro-drone KW - Data mapping PY - 2011 U6 - https://doi.org/10.1524/teme.2011.0158 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 78 IS - 10 SP - 470 EP - 478 PB - Oldenbourg CY - München AN - OPUS4-24652 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Dzierliński, M. A1 - Lilienthal, A. J. A1 - Bartholmai, Matthias T1 - Aerial-based gas tomography – from single beams to complex gas distributions N2 - In this paper, we present and validate the concept of an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor with a 3-axis aerial stabilization gimbal for aiming at a versatile octocopter. While the TDLAS sensor provides integral gas concentration measurements, it does not measure the distance traveled by the laser diode’s beam nor the distribution of gas along the optical path. Thus, we complement the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from a set of integral concentration measurements. To allow for a fundamental ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present results showing its performance characteristics and 2D plume reconstruction capabilities under realistic conditions. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). KW - Aerial robot olfaction KW - Mobile robot olfaction KW - Gas tomography KW - TDLAS KW - Plume PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-487843 SP - 1 EP - 16 PB - Taylor & Francis CY - London AN - OPUS4-48784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppe, Enrico A1 - Augustin, D. A1 - Bartholmai, Matthias A1 - Daum, Werner T1 - Air-based multi-hop sensor network for the localization of persons N2 - In this work an air-based sensor network for the localization of persons at extensive areas is presented. The developed network consists of a localization device which the person is wearing (BodyGuard-System), a mobile relay station in the air, and a base station. All three parts communicate with the same radio chip. The BodyGuard-System is an inertial navigation system which was developed for localization in difficult environments with high accuracy and low measurement uncertainty. To increase the range of the system, a multi-hop network was built up. The measured data of the BodyGuard-System and the mobile relay station is visualized on a PC in the base station. This multi-hop network is necessary for example for fire department missions. T2 - EuroSensors 2014, 28th European Conference on Solid-State Transducers CY - Brescia, Italy DA - 07.09.2014 KW - WSN KW - Mesh routing KW - Air-based KW - Multi-hop KW - Localization PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-324294 SN - 1877-7058 VL - 87 SP - 528 EP - 531 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-32429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Reinstädt, Philipp A1 - Griepentrog, Michael A1 - Beck, Uwe A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Basedau, Frank A1 - Hofmann, Detlef A1 - Gong, Xin A1 - Schukar, Vivien T1 - Altbekannter Watts-Elektrolyt, junge Hightech-Anwendung, Nickel- und Nickel-Eisen-Schichten als magnetostriktive Aktorschicht auf faseroptischen Sensoren N2 - Durch faseroptische Sensoren können Bauteile im Einsatz kontinuierlich überwacht und frühzeitig Informationen über Materialveränderungen gewonnen werden. Mittels einer magnetostriktiven Aktorschicht, welche den Sensor umhüllt, kann nun auch die korrekte Sensorfunktion jederzeit kontrolliert werden. Als Aktorschicht eignet sich galvanisch abgeschiedenes reines Nickel oder Nickel-Eisen in der Zusammensetzung 50:50. Um diese haftfest mit dem Sensor zu verbinden wurde ein ECD/PVD-Kombinationsschichtsystem entwickelt. Die mechanischen Eigenschaften der ECD-Schicht können sowohl mit einer auf die Fasergeometrie angepassten instrumentierten Eindringprüfung als auch einem 2-Punkt-Biegeversuch bestimmt werden. KW - Faseroptik-Sensoren KW - ECD-Aktorschicht KW - PVD-Haftfestigkeit KW - Nickel-/Nickel-Eisen- Magnetostriktion PY - 2016 SN - 2195-5891 SN - 2195-5905 VL - 12 SP - 1 EP - 4 AN - OPUS4-39129 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - Assessing the performance of intumescent coatings using bench-scaled cone calorimeter and finite difference simulations N2 - A method was developed to assess the heat insulation performance of intumescent coatings. The method consists of temperature measurements using the bench-scaled experimental set-up of a cone calorimeter and finite difference simulation to calculate the effective thermal conductivity dependent on time/temperature. This simulation procedure was also adapted to the small scale test furnace, in which the standard time-temperature curve is applied to a larger sample and thus which provides results relevant for approval. Investigations on temperature and calculated effective thermal conduction were performed on intumescent coatings in both experimental set-ups using various coating thicknesses. The results correspond to each other as well as showing the limits of transferability between both fire tests. It is shown that bench-scaled cone calorimeter tests are a valuable tool for assessing and predicting the performance of intumescent coatings in larger tests relevant for approval. The correlation fails for processes at surface temperatures above 750°C, which are not reached in the cone calorimeter, but are attained in the small scale furnace set-up. KW - Intumescent coatings KW - Cone calorimetry KW - Numerical analysis KW - Small scale test furnace PY - 2007 SN - 0308-0501 SN - 1099-1018 VL - 31 IS - 3 SP - 187 EP - 205 PB - Heyden CY - London AN - OPUS4-14645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Bouchikhi, B. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - El Bari, N. T1 - Assessment of outdoor odor emissions from polluted sites using simultaneous thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS), electronic nose in conjunction with advanced multivariate statistical approaches N2 - Poor air quality, particularly in urban areas, causes various diseases and degrades living standards. Air Quality could be affected by emissions of odor, Volatile Organic Compounds (VOCs), and other gases. Therefore, assessment and monitoring of odorous air quality using sensitive, simple, rapid, accurate and portable tools is very important for public health. This study aimed to characterize odor emissions to detect malfunctions in facilities and to prevent air pollution and olfactory nuisance in the environment. A gas chromatographic method, in conjunction with sensorial analysis were performed for odorous air samples analysis collected from neighborhood of Meknes city (Morocco). Advanced multivariate statistical approaches, such as Principal Components Analysis (PCA), Discriminant Function Analysis (DFA), Support Vector Machines (SVMs), and Hierarchical Cluster Analysis (HCA), were used to describe samples similarities. The electronic nose (e-nose) data processing exhibits a satisfactory discrimination between the odorous air samples. Twenty-four VOCs with known molecular formulas were identified with Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). A validated Partial Least Square (PLS) model foresees good calibration between e-nose measurement and TD-GCMS analysis. The finding indicates that TD-GC–MS approach in conjunction with e-nose unit could be suitable tool for environmental measurement-based odor emissions. KW - Electronic nose KW - TD-GC-MS KW - PLS regression KW - Multivariate analysis KW - Outdoor odor emissions PY - 2021 U6 - https://doi.org/10.1016/j.atmosenv.2021.118449 SN - 1352-2310 VL - 256 SP - 118449 PB - Elsevier Ltd. AN - OPUS4-52626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - Autonomous gas-sensitive microdrone - wind vector estimation and gas distribution mapping N2 - This article presents the development and validation of an autonomous, gas sensitive microdrone that is capable of estimating the wind vector in real time using only the onboard control unit of the microdrone and performing gas distribution mapping (DM). Two different sampling approaches are suggested to address this problem. On the one hand, a predefined trajectory is used to explore the target area with the microdrone in a real-world gas DM experiment. As an alternative sampling approach, we introduce an adaptive strategy that suggests next sampling points based on an artificial potential field (APF). Initial results in real-world experiments demonstrate the capability of the proposed adaptive sampling strategy for gas DM and its use for gas source localization. KW - Anemometric sensor KW - Autonomous micro UAV KW - Chemical sensing KW - Gas distribution modelling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Quadrocopter KW - Sensor planning KW - Artificial potential field PY - 2012 U6 - https://doi.org/10.1109/MRA.2012.2184671 SN - 1070-9932 VL - 19 IS - 1 SP - 50 EP - 61 PB - IEEE CY - New York, NY, USA AN - OPUS4-25773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lazik, D. A1 - Ebert, S. A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Characteristic length measurement of a subsurface gas anomaly - A monitoring approach for heterogeneous flow path distributions N2 - Geogenic gases from natural sources, carbon dioxide (CO2) from a geological repository (carbon capture and storage - CCS) or a leaking gas pipeline can present serious risks in industrial and urban areas. To extend the lead time for risk treatment in such critical regions, reliable detection of gases within the shallow subsurface is required to observe critical gas accumulations before degassing into the atmosphere. A near real-time monitoring approach is introduced to determine the volumetric expansion of a leakinggas in the subsurface. Considering the pressure relaxation with the ambient air pressure, the approach enables the forecasting of the final size of a pressurized gas body in terms of characteristic lengths. According to theoretical basics, such a characteristic length, which enables us to perform a gas (safety) measurement based on a purely geometrical measure, behaves independently of subsurface properties,i.e., it enables a reliable quantification of the escaping gas irrespective of its heterogeneous or changingflow path distribution. A field test for a 10 l/min pinhole leakage injected into a 10 m long, 0.4 m wide, 0.95 m deep soil-filled trench that was equipped with linear sensors shows the lateral-vertical volumetric gas expansion along these sensors, and demonstrates the applicability of the characteristic length approach. KW - Monitoring KW - Carbon capture and storage KW - Leakage KW - Quantification KW - Subsurface KW - CO2 PY - 2016 U6 - https://doi.org/10.1016/j.ijggc.2016.02.008 SN - 1750-5836 VL - 2016 IS - 47 SP - 330 EP - 341 PB - Elsevier B.V. AN - OPUS4-35425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, A. A1 - Pütz, D. A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Wendschuh-Josties, M. T1 - Combustion behaviour of epoxide based nanocomposites with ammonium and phosponium bentonites N2 - The influence of different organobentonites on the decomposition and the combustion behaviour of an epoxy resin were examined. The epoxy resin is a cationically polymerised cycloaliphatic epoxy resin flexibilised with poly(tetrahydrofuran) (PTHF), with hydroxyl endgroups. The bentonite was modified with either an ammonium or a phosphonium salt. The thermal decomposition of the PTHF induced by the initiator, used for the cationic polymerisation, did neither take place for the nanocomposite based on the ammonium bentonite nor for that based on the phosphonium bentonite. This improved decomposition characteristic lead to a larger time to ignition for both kinds of nanocomposites compared to the not modified polymer, which is not the case for other polymer/clay nanocomposites described in the literature. The fire behaviour was investigated using limiting oxygen index (LOI), a horizontal burner test and a cone calorimeter. The forced flaming conditions in the cone calorimeter were varied using different external heat fluxes between 30 and 70 kW · m-2. The fire behaviour of the nanocomposites was improved in comparison to the polymer, and phosphonium bentonite was superior to ammonium bentonite. The main mechanism is a barrier formation resulting in a reduction of the fire growth rate, which was more pronounced in the case of high external heat fluxes. KW - Cationic polymerisation KW - Clay KW - Combustion KW - Degradation KW - Epoxide KW - Nanocomposite PY - 2003 U6 - https://doi.org/10.1002/macp.200300047 SN - 1022-1352 SN - 1521-3935 VL - 204 IS - 18 SP - 2247 EP - 2257 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrov, Sergej A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Wosniok, Aleksander A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Nicoletto, G. ED - Pastrama, S.D. ED - Emri, I. T1 - Concept for investigating mechanical and thermal impacts on distributed subsurface gas monitoring N2 - A multifunctional sensor in line shape was developed and introduced in previous work for measuring of gas concentrations, temperature change, and strain. A current field study focuses on a spatially distributed monitoring of subsurface CO 2 gas storage sites in near real time. Mechanical impacts, e.g., caused by construction work, denudation, and seismic activity, can affect the integrity of underground gas storage sites. Thermal or moisture impacts, e.g., caused by weather conditions, can influence the gas Distribution behavior. In this paper, we briefly describe the setup of a CO 2 injection soil test field. This setup contains actuating elements for the investigation of mechanical and thermal impacts on distributed subsurface gas monitoring. A concept is given for evaluating these impacts and first experimental results are presented. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Linear sensor KW - Distributed sensor KW - Monitoring of CO 2 KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fibre optical sensing PY - 2016 U6 - https://doi.org/10.1016/j.matpr.2016.03.060 SN - 2214-7853 VL - 3 IS - 4 SP - 1124 EP - 1128 PB - Elsevier Ltd. AN - OPUS4-35688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In this paper, we introduce a nano aerial robot swarm for indoor air quality monitoring applications such as occupational health and safety of (industrial) workplaces. The concept combines a robotic swarm composing of nano Unmanned Aerial Vehicles (nano UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight metal oxide gas sensors for measuring the Total Volatile Organic Compound (TVOC) in ppb and estimating the eCO2 (equivalent calculated carbon-dioxide) concentration in ppm. TVOC is a measure for the indoor air quality. An indoor localization and positioning system will be used to estimate the absolute 3D position of the swarm like GPS. Based on this novel indoor air quality monitoring concept, the development and validation of new algorithms in the field of Mobile Robot Olfaction (MRO) are planned, namely gas source localization and gas distribution mapping. A test scenario will be built up to validate and optimize the gas-sensitive nano aerial robot swarm for the intended applications. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Nano aerial robot KW - UAV KW - Swarm KW - Indoor air quality KW - Monitoring KW - Concept PY - 2019 U6 - https://doi.org/10.1016/j.matpr.2019.03.151 SN - 2214-7853 VL - 12 IS - 2 SP - 470 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael A1 - Köppe, Enrico T1 - Erprobung eines Messsystems mit Datenbus und dezentraler Datenspeicherung für den Einsatz bei Fallprüfungen N2 - Zur Untersuchung der Sicherheit von Behältern für den Transport und die Lagerung von Gefahrstoffen und -gütern werden Fallprüfungen durchgeführt. Die Aufpralldynamik und die strukturmechanischen Einwirkungen auf den Behälter werden mittels Beschleunigungsaufnehmern und Dehnungsmessstreifen erfasst. Dabei kommen derzeit Vielkanalmesssysteme zum Einsatz, die eine Verkabelung jeder einzelnen Messstelle und somit das Mitfallen eines Kabelbaums erfordern, wodurch Probleme bei der Versuchsvorbereitung und Durchführung entstehen. Die Verwendung eines Messsystems mit Datenbus und dezentraler Datenspeicherung bietet diesbezüglich einen vielversprechenden Lösungsansatz. KW - Vielkanalmesssystem KW - Datenbus KW - Gefahrstoffe KW - Behälter KW - Fallprüfung KW - Hopkinsonstab KW - Multichannel measuring system KW - Data bus KW - Dangerous goods KW - Container KW - Drop test KW - Hopkinson bar PY - 2009 U6 - https://doi.org/10.1524/teme.2009.0945 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 76 IS - 10 SP - 447 EP - 454 PB - Oldenbourg CY - München AN - OPUS4-20284 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartelmeß, Jürgen A1 - Zimmek, David A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph A1 - Schäferling, M. T1 - Fibre optic ratiometric fluorescence pH sensor for monitoring corrosion in concrete N2 - In this communication a novel concept for pH sensing is introduced which is specifically adapted to monitor carbonation induced corrosion in concrete structures. The method is based on a ratiometric measurement principle, exploiting the pH sensitive colour switching of thymol blue in the basic pH regime and the emissive properties of two different (Zn)CdSe/ZnS core shell quantum dots. The transition point of thymol blue in a Hydrogel D4 matrix was determined to be at around pH 11.6, which fits ideally to the intended application. Next to the fundamental spectroscopic characterization of the ratiometric response, a new design for a sensor head, suitable for the incorporation into concrete matrices is presented. Toward this, a manufacturing process was developed which includes the preparation of a double layer of polymers containing either thymol blue or a quantum dot mixture inside a porous ceramic tube. Results of a proof-of-priciple performance test of the sensor head in solutions of different pH and in cement specimens are presented, with encouraging results paving the way for future field tests in concrete. KW - Fiber optic sensing KW - PH monitoring in concrete KW - Embedded sensors KW - Ratiometric fluorescence PY - 2020 U6 - https://doi.org/10.1039/c9an02348h VL - 145 IS - 6 SP - 2111 EP - 2117 PB - Royal Society of Chemistry AN - OPUS4-50381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. T1 - Fliegende Aufspürer - Gasmessung und Gasquellenlokalisierung mit einer Mikrodrohne KW - Mikrodrohne KW - Gasmessung KW - Gasquellenlokalisierung KW - Mobile Sensorik PY - 2013 SN - 2191-3803 VL - 4 SP - 30 EP - 33 PB - Succidia AG, Verl. und Kommunikation CY - Darmstadt AN - OPUS4-29070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Gotor, Raúl A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Bell, Jérémy T1 - Fluorescent Hydrophobic Test Strips with Sterically Integrated Molecular Rotors for the Detection of Hydrocarbons in Water and Soil with an Embedded Optical Read-Out N2 - Contamination of natural bodies of water or soil with oils and lubricants (or generally, hydrocarbon derivatives such as petrol, fuels, and others) is a commonly found phenomenon around the world due to the extensive production, transfer, and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPHs) in water and soil. The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4-DNS-OH). This dye is embedded in a hydrophobic polymeric matrix (polyvinylidene fluoride), avoiding interactions with water and providing a robust support for use in a test strip fashion. Together with the strips, an embedded optical system was designed for fluorescence signal read-out, featuring a Bluetooth low-energy connection to a commercial tablet device for data processing and analysis. This system works for the detection and quantification of TPHs in water and soil through a simple extraction protocol using a cycloalkane solvent with a limit of detection of 6 ppm. Assays in surface and sea waters were conclusive, proving the feasibility of the method for in-the-field operation. KW - Test strip KW - Sensor KW - Smartphone KW - Fluorescence KW - Test Streifen KW - Sensoren KW - Fluoreszenz KW - Petrol KW - Öl PY - 2023 U6 - https://doi.org/10.1021/acs.energyfuels.3c01175 SN - 0887-0624 SP - 1 EP - 6 PB - American Chemical Society CY - Washington, United States AN - OPUS4-57892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Holl, H. T1 - Flying ant robot for chemical trail detection and localization N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize a 5 cm wide chemical trail, a detection criterion was developed that uses only relative changes in the transient phase of the sensor response. The reduction in signal strength dependence improves the robustness of its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot can correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2022 U6 - https://doi.org/10.1016/j.matpr.2022.02.594 SN - 2214-7853 VL - 62 SP - 2462 EP - 2465 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-54507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms N2 - Gas source localization (GSL) with mobile robots is a challenging task due to the unpredictable nature of gas dispersion, the limitations of the currents sensing technologies, and the mobility constraints of ground-based robots. This work proposes an integral solution for the GSL task, including source declaration. We present a novel pseudo-gradient-based plume tracking algorithm and a particle filter-based source declaration approach, and apply it on a gas-sensitive micro-drone. We compare the performance of the proposed system in simulations and real-world experiments against two commonly used tracking algorithms adapted for aerial exploration missions. KW - Autonomous micro UAV KW - Chemical and wind sensing KW - Gas source localization KW - Particle filter PY - 2013 U6 - https://doi.org/10.1080/01691864.2013.779052 SN - 0169-1864 SP - 725 EP - 738 PB - VNU Sciences Pr. CY - Utrecht AN - OPUS4-28010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Kammermeier, Michael A1 - Koeppe, Tabea A1 - Werner, Klaus-Dieter ED - Nicoletto, G. ED - Pastrama, S.D. ED - Emri, I. T1 - High dynamic measurement of strain and acceleration using a multichannel measuring system with single cable serial connection N2 - Strain and acceleration measurement during high dynamic drop tests, e.g., of containments for dangerous goods is performed using high speed multichannel measuring systems. So far established and operated systems need a cable connection of every strain gauge and acceleration sensor with the measuring device, often counting up to a number of more than 100 cables, corresponding to the number of applied sensors. The result is a massive cable harness consisting of all single cables, which is difficult to handle and causes a number of practical problems. An innovative approach is proposed by using a single cable measuring system, consisting of measuring modules with data bus connection and local data acquisition. Promising results were presented in a previous study. This paper follows up with additional results from full-scale testing of a further enhanced single cable system for the application in drop tests. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Multichannel measuring KW - Single cable serial connection KW - Dangerous goods container KW - Drop test KW - High impact testing PY - 2016 U6 - https://doi.org/10.1016/j.matpr.2016.03.023 SN - 2214-7853 VL - 3 IS - 4 SP - 931 EP - 935 PB - Elsevier Ltd. AN - OPUS4-35689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -