TY - JOUR A1 - Mansurova, Maria A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Rurack, Knut A1 - Bartholmai, Matthias A1 - Bell, Jérémy T1 - On-Site Analytical Tool Based on Crude Oil Fluorescence and Chemometrics for the Rapid Determination of the Nature and Essential Properties of Oil Spills N2 - With the reduction of large oil spills because of stricter regulations and safety measures, the question of how to manage smaller oil spills arises. Few on-site analytical tools are available for first responders or other law enforcement personnel to rapidly test for crude oil in the early management of localized polluted areas. The approach reported here relies on well-described computer-assisted multivariate data analysis of the intrinsic fluorescence fingerprints of crude oils to build a multivariate model for the rapid classification of crude oils and the prediction of their properties. Thanks to a dedicated robust portable reader, the method allowed classification and accurate prediction of various properties of crude oil samples like density (according to API, the American Petroleum Institute and viscosity as well as composition parameters such as volume fractions of paraffins or aromatics. In this way, autonomous operation in on-site or in-the-field applications becomes possible based on the direct (undiluted and untreated) measurement of samples and a rapid, tablet-operated readout system to yield a robust and simple analytical test with superior performance. Testing in real-life scenarios allowed the successful classification and prediction of a number of oil spill samples as well as weathered samples that closely resemble samples collected by first responders. KW - Oil spills KW - Fluorescence KW - PCA KW - Petroleum KW - Rapid test KW - Portable PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595442 VL - 4 IS - 2 SP - 621 EP - 627 PB - American Chemical Society (ACS) AN - OPUS4-59544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Grotelüschen, Bjarne A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph ED - Kossa, A. ED - Kiss, R. T1 - Towards Autonomous NDT Inspection: Setup and Validation of an Indoor Localization System N2 - Monitoring and maintenance of civil infrastructure are of great importance, as any undetected damage can cause high repair costs, unintended deadtime, or endanger structural integrity. The inspection of large concrete structures such as bridges and parking lots is particularly challenging and time-consuming. Traditional methods are mostly manual and involve mapping a grid of measurement lines to record the position of each measurement. Current semi-automated methods, on the other hand, use GPS or tachymeters for localization but still require trained personnel to operate. An entirely automated approach using mobile robots would be more cost- and time-efficient. While there have been developments in using GPS-enabled mobile robots for bridge inspection, the weak signal strength in indoor areas poses a challenge for the automated inspection of structures such as parking lots. This paper aims to develop a solution for the automated inspection of large indoor concrete structures by addressing the problem of robot localization in indoor spaces and the automated measurement of concrete cover and rebar detection. T2 - 39th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Siófok, Hungary DA - 26.09.2023 KW - NDT Inspection KW - Mobile Robot KW - Indoor Localization KW - Setup and Validation PY - 2023 SN - 978-963-421-927-9 SP - 88 EP - 89 PB - Hungarian Scientific Society of Mechanical Engineering (GTE) CY - Siófok, Hungary AN - OPUS4-58660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Grotelüschen, Bjarne A1 - Strangfeld, Christoph T1 - Towards Autonomous NDT Inspection: Setup and Validation of an Indoor Localization System N2 - Monitoring and maintenance of civil infrastructure are of great importance, as any undetected damage can cause high repair costs, unintended deadtime, or endanger structural integrity. The inspection of large concrete structures such as bridges and parking lots is particularly challenging and time-consuming. Traditional methods are mostly manual and involve mapping a grid of measurement lines to record the position of each measurement. Current semi-automated methods, on the other hand, use GPS or tachymeters for localization but still require trained personnel to operate. An entirely automated approach using mobile robots would be more cost- and time-efficient. While there have been developments in using GPS-enabled mobile robots for bridge inspection, the weak signal strength in indoor areas poses a challenge for the automated inspection of structures such as parking lots. This paper aims to develop a solution for the automated inspection of large indoor concrete structures by addressing the problem of robot localization in indoor spaces and the automated measurement of concrete cover and rebar detection. T2 - 39th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Siófok, Hungary DA - 26.09.2023 KW - NDT Inspection KW - Mobile Robot KW - Indoor Localization KW - Setup and Validation PY - 2023 AN - OPUS4-58662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Gotor, Raúl A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Bell, Jérémy T1 - Fluorescent Hydrophobic Test Strips with Sterically Integrated Molecular Rotors for the Detection of Hydrocarbons in Water and Soil with an Embedded Optical Read-Out N2 - Contamination of natural bodies of water or soil with oils and lubricants (or generally, hydrocarbon derivatives such as petrol, fuels, and others) is a commonly found phenomenon around the world due to the extensive production, transfer, and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPHs) in water and soil. The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4-DNS-OH). This dye is embedded in a hydrophobic polymeric matrix (polyvinylidene fluoride), avoiding interactions with water and providing a robust support for use in a test strip fashion. Together with the strips, an embedded optical system was designed for fluorescence signal read-out, featuring a Bluetooth low-energy connection to a commercial tablet device for data processing and analysis. This system works for the detection and quantification of TPHs in water and soil through a simple extraction protocol using a cycloalkane solvent with a limit of detection of 6 ppm. Assays in surface and sea waters were conclusive, proving the feasibility of the method for in-the-field operation. KW - Test strip KW - Sensor KW - Smartphone KW - Fluorescence KW - Test Streifen KW - Sensoren KW - Fluoreszenz KW - Petrol KW - Öl PY - 2023 U6 - https://doi.org/10.1021/acs.energyfuels.3c01175 SN - 0887-0624 SP - 1 EP - 6 PB - American Chemical Society CY - Washington, United States AN - OPUS4-57892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nattuveettil, Keerthana A1 - Brunner, Nanine A1 - Tiebe, Carlo A1 - Thomas, Marcus A1 - Melzer, Michael A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Neumann, Patrick P. T1 - Digital approach of certification in Quality Infrastructure N2 - QI-Digital is a joined project aiming at digitalising Quality Infrastructure (QI) processes involving standardization, conformity assessment, accreditation, metrology, and market surveillance [1]. Federal institute of material research and testing (BAM) is working on the creation of a digital calibration certifi-cate (DCC) to achieve digital metrological traceability and conformity assessment. The utilisation of machine readable and executable DCCs in the XML format is demonstrated on an example of a tem-perature measurement at a hydrogen refueling station. The certificates will be retrieved and analysed automatically at a Process Control System or at a Digital Twin. T2 - SMSI 2023 Conference CY - Nürnberg, Germany DA - 08.05.2023 KW - Quality Infrastructure KW - Digital Certificates KW - Temperature calibration KW - Digitalisation KW - Hydrogen technology PY - 2023 U6 - https://doi.org/10.5162/SMSI2023/A3.4 SP - 51 EP - 52 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-57964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Winkler, Nicolas P. A1 - Bartholmai, Matthias ED - Kourkoulis, S. K. T1 - Multi-sensor system for long-term monitoring with WiFi and LoRaWAN technology N2 - In many cases, science falls back on self-developed prototype systems, which are used and developed for the measurement and execution of the tasks. About 80 % of the development is based on the same hardware design, which is used in only one application scenario and then discarded. For the most part, there are also uncalibrated sensors, since it is costly to calibrate a complicated sensor measurement system or the entire measurement chain since access to the sensor systems is not always available. This paper describes a conceptual design to implement a versatile sensor system with the motivation to fuse the data recording and data reception, which can cover large areas with the help of LoRaWAN (Long Range Wide Area Network) technology. To overcome disadvantages of LoRaWAN, namely the slow data rates, the proposed sensor system can also cover smaller areas with the widespread WiFi technology. An enormous advantage over individual complete systems in the form of a prototype, is the rapid expansion, uncomplicated calibration of the individual sensors and the ecological relief. A modular design is used, where individual stacks with sensors and peripherals can be added separately. The stacks are standalone low-power systems and can be calibrated, maintained, and replaced separately and do not require the entire measurement chain. The measured and sent values are stored locally on the main stack and sent to the data collector (gateway) and evaluated by means of the automated selection between WiFi and LoRaWAN. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Athens, Greece DA - 20.09.2022 KW - Multisensor system KW - LoRaWAN KW - WiFi KW - Long term monitoring PY - 2022 SP - 1 EP - 2 AN - OPUS4-56462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Advance in electronic nose technology developed for the detection and discrimination of ethanol, ammonia, and hydrogen sulfide gases N2 - This work focuses on the design and fabrication of low-cost and fast-response of an electronic nose (E-nose) based on semiconductor gas sensors, for discriminating some synthetic gases such as ammonia (NH3), ethanol (C2H5OH), and hydrogen sulfide (H2S). Additionally, the capability of separating different concentration levels of each considered gases was checked. Dataset treatment of E-nose by using Principal Component Analysis (PCA) showed a good discrimination of the different synthetic gases. Furthermore, perfect classification was reached of different concentration levels of the analysed gases by using Discriminant Function Analysis (DFA). In the light of these results, it could be stated that the developed E-nose system constitutes an inexpensive, rapid, simple to use, and efficient tool for synthetic gases detection. T2 - IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Aveiro, Portugal DA - 29.05.2022 KW - Electronic nose KW - Metal oxide semiconductor KW - Chemometric techniques KW - Environmental analysis PY - 2022 SN - 978-1-6654-5860-3 U6 - https://doi.org/10.1109/ISOEN54820.2022.9789636 SP - 1 EP - 3 AN - OPUS4-56574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Holl, H. T1 - Flying ant robot for chemical trail detection and localization N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize a 5 cm wide chemical trail, a detection criterion was developed that uses only relative changes in the transient phase of the sensor response. The reduction in signal strength dependence improves the robustness of its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot can correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2022 U6 - https://doi.org/10.1016/j.matpr.2022.02.594 SN - 2214-7853 VL - 62 SP - 2462 EP - 2465 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-54507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Hamada, D. A. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Pollution parameters evaluation of wastewater collected at different treatment stages from wastewater treatment plant based on E-nose and E-tongue systems combined with chemometric techniques N2 - Wastewater contains harmful chemicals and heavy metals that are known to cause various environmental and health problems. Therefore, the water quality control using sensitive, simple, fast, accurate, and portable tools is of great importance. This study aimed to evaluate the pollution parameters of wastewaters collected at different treatment stages from a wastewater treatment plant (WWTP) that treats domestic and industrial wastewaters by using an electronic nose (E-nose) and a voltammetric electronic tongue (E-tongue) combined with chemometric techniques. Water and wastewater pollution parameters determination were performed using inductively coupled plasma optical emission spectrometry for the determination of cations, and anions by using ion chromatography. Chemometric techniques, such as Principal Component Analysis (PCA), Discriminant Function Analysis (DFA), Support Vector Machines (SVMs), and Hierarchical Cluster Analysis (HCA), were used to process the E-nose and E-tongue datasets to describe the similarities between the samples. In addition, Partial Least Squares Regression (PLSR) model was constructed using electronic sensing data to simultaneously predict the concentration values of physicochemical parameters. The obtained correlation coefficient, for training and testing sets, is higher than 0.91 for the prediction of the concentration of all physicochemical parameters, except for iron (Fe) which remains 0.84. These results suggest that simple, portable, and inexpensive tools such as electronic nose and tongue are suitable for wastewater analysis. KW - Wastewater KW - Electronic nose KW - Voltammetric electronic tongue KW - Water quality control KW - Chemometric techniques KW - Gas sensing PY - 2022 U6 - https://doi.org/10.1016/j.chemolab.2022.104593 VL - 227 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-55652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nattuveettil, Keerthana A1 - Brunner, Nanine A1 - Tiebe, Carlo A1 - Melzer, Michael A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Einsatz von Sensortechnologien an einer Wasserstofftankstelle als Beitrag zur digitalen Qualitätsinfrastruktur T1 - Use of sensor technologies at hydrogen test platform as a part of QI Digital N2 - Die Optimierung und Validierung des digitalen Wasserstofftankstellenmanagements mit Sensortechnologien ist das übergeordnete Ziel des Teilprojekts Digitale Qualitätsinfrastruktur mit Sensortechnologien (QIST) am Use Case H2, im Rahmen der digitalen Qualitätsinfrastruktur (QI digital[1]). Hierfür sollen u.a. Sensornetzwerke mit digital-gestützten Auswertungsstrategien intelligent gestaltet werden (Stichwort KI bzw. digitaler Zwilling). Verschiedene, sich ergänzende Sensoren, Systemkomponenten und KI-Methoden stehen als Bausteine intelligenter Sensorsysteme zur Verfügung, mit dem Zweck, die physikalischen und chemischen Parameter an und in Anlagen umfassend und effizient zu überwachen sowie Fehlfunktionen zuverlässig zu detektieren und zu interpretieren, Abbildung 1. Konkrete Arbeitsschritte sind, nach dem Aufbau der Versuchsplattform „Wasserstofftankstelle“, die Instrumentierung von Sensorik und deren digitale Integration in das Tankstellenmanagementsystem sowie die Validierung im Realbetrieb. Die somit erzielten Messergebisse sowie die Messunsicherheiten, Historien und Verfahren werden in digitaler Form aufbereitet, gespeichert und fortlaufend in die KI-basierte Datenauswertung einbezogen, inkl. der Anbindung an die metrologische Rückführungskette. Ziele sind: • Einführung eines neuen messtechnischen Ansatzes und eines digitalen Zwillings für den Anwendungsfall "Wasserstofftankstelle" auf Basis der H2-Sensorik sowie der Zustandsgrößen Druck und Temperatur • Qualitätssicherung durch Applikationen zuverlässiger Gassensorik, Manometer und Thermometer sowie KI-Methoden zur Prozesskontrolle und Detektion von Fehlfunktionen • Nutzung von digitalen Kalibrierscheinen (DCCs) insbesondere für die Messgröße Temperatur zur Realisierung der metrologischen Rückführung in einer digitalen Qualitätsinfrastruktur T2 - Sensorik für die Digitalisierung chemischer Produktionsanlagen CY - Frankfurt a. M., Germany DA - 13.06.2022 KW - QI Digital KW - H2Safety@BAM KW - Wasserstoff KW - Hydrogen KW - Sensorik KW - Digitalisierung KW - Digitalisation PY - 2022 AN - OPUS4-55399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Characterization of Unpleasant Odors in Poultry Houses Using Metal Oxide Semiconductor-Based Gas Sensor Arrays and Pattern Recognition Methods N2 - In this study, the ability of an electronic nose developed to analyze and monitor odor emissions from three poultry farms located in Meknes (Morocco) and Berlin (Germany) was evaluated. Indeed, the potentiality of the electronic nose (e-nose) to differentiate the concentration fractions of hydrogen sulfide, ammonia, and ethanol was investigated. Furthermore, the impact change of relative humidity values (from 15% to 67%) on the responses of the gas sensors was reported and revealed that the effect remained less than 0.6%. Furthermore, the relevant results confirmed that the developed e-nose system was able to perfectly classify and monitor the odorous air of poultry farms. T2 - 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry CY - Online meeting DA - 01.07.2021 KW - Pattern recognition methods KW - Gas sensors KW - Electronic nose KW - poultry odorous air monitoring PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-544005 UR - https://csac2021.sciforum.net/ VL - 5 IS - 52 SP - 1 EP - 7 PB - MDPI AN - OPUS4-54400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Combining of TD-GC-MS and home developed electronic nose for road traffic air monitoring N2 - In this work, we demonstrate the ability of an electronic nose system based on an array of six-semiconductor gas sensors for outdoor air quality monitoring over a day at a traffic road in downtown of Meknes city (Morocco). The response of the sensor array reaches its maximum in the evening of the investigated day which may due to high vehicular traffic or/and human habits resulting in elevated concentrations of pollutants. Dataset treatment by Principal Component Analysis and Discriminant Function Analysis shows a good discrimination between samples collected at different times of the day. Moreover, Support Vector Machines were used and reached a classification success rate of 97.5 %. Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS) technique was used to validate the developed e-nose system by identifying the composition of the analyzed air samples. The discrimination obtained by e-nose system was in good agreement with the TD-GC-MS results. This study demonstrates the usefulness of TD-GC-MS and e-nose, providing high accuracy in discriminating outdoor air samples collected at different times. This demonstrates the potential of using the e-nose as a rapid, easy to use and inexpensive environmental monitoring system. T2 - 2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS) CY - Sfax, Tunisia DA - 07.06.2021 KW - GC-MS KW - Electronic nose KW - Gas sensors KW - Urban air monitoring PY - 2021 U6 - https://doi.org/10.1109/DTS52014.2021.9498110 SP - 1 EP - 6 AN - OPUS4-54401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias T1 - Flying Ant Robot – Aerial Chemical Trail Detection and Localization N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - IEEE Sensors 2021 CY - Online meeting DA - 31.10.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 U6 - https://doi.org/10.1109/sensors47087.2021.9639857 SP - 1 EP - 4 PB - IEEE AN - OPUS4-53933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Holl, H. T1 - Aerial Chemical-Trail Detection and Localization N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 SN - 978-3-9504997-0-4 VL - 2021 SP - 39 EP - 40 AN - OPUS4-53409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Tiebe, Carlo A1 - Bell, Jérémy A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Semi-automatic Measurement Device for Long-Term Monitoring of Ammonia in Gas Phase N2 - In the present paper the development of a semi-automated device for long-term monitoring of gaseous ammonia is described. A sensor material was produced that changes its optical properties in the pres-ence of low concentrations of ammonia in air. The implementation into an electronic device enables precise, simple, economic and fast monitoring of low concentrations of harmful gases, like ammonia, and hence can help to improve the climate monitoring in livestock housing, barns or stables. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Spectroscopy KW - Embedded sensor KW - Environment KW - Air quality PY - 2021 SP - 133 EP - 134 AN - OPUS4-52576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias T1 - Feasibility Study for Safe Workplaces through automation and digitalization technology with redesigned Smart Sensors and LoRaWAN Monitoring System N2 - This project addresses the application of safe and healthy workplaces in offices, chemical laboratories and other workplaces where indoor air quality plays an important role. The LoRaWAN (Long Range Wide Area Network) is used as a communication interface to make sensor data globally accessible. The objectives of the project are to create a sensor node and an online and offline system that collects the data from the sensor nodes and stores it on a local server, in a cloud, and also locally on the node to prevent communication failures. An important point in this project is the development of the sensor nodes and the placement of these in the premises, thus no development work is involved in Building the infrastructure. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Smart sensors KW - Air quality monitoring KW - LoRaWAN KW - VOC KW - Multisensor system PY - 2021 SP - 230 EP - 231 AN - OPUS4-52649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Bouchikhi, B. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - El Bari, N. T1 - Assessment of outdoor odor emissions from polluted sites using simultaneous thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS), electronic nose in conjunction with advanced multivariate statistical approaches N2 - Poor air quality, particularly in urban areas, causes various diseases and degrades living standards. Air Quality could be affected by emissions of odor, Volatile Organic Compounds (VOCs), and other gases. Therefore, assessment and monitoring of odorous air quality using sensitive, simple, rapid, accurate and portable tools is very important for public health. This study aimed to characterize odor emissions to detect malfunctions in facilities and to prevent air pollution and olfactory nuisance in the environment. A gas chromatographic method, in conjunction with sensorial analysis were performed for odorous air samples analysis collected from neighborhood of Meknes city (Morocco). Advanced multivariate statistical approaches, such as Principal Components Analysis (PCA), Discriminant Function Analysis (DFA), Support Vector Machines (SVMs), and Hierarchical Cluster Analysis (HCA), were used to describe samples similarities. The electronic nose (e-nose) data processing exhibits a satisfactory discrimination between the odorous air samples. Twenty-four VOCs with known molecular formulas were identified with Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). A validated Partial Least Square (PLS) model foresees good calibration between e-nose measurement and TD-GCMS analysis. The finding indicates that TD-GC–MS approach in conjunction with e-nose unit could be suitable tool for environmental measurement-based odor emissions. KW - Electronic nose KW - TD-GC-MS KW - PLS regression KW - Multivariate analysis KW - Outdoor odor emissions PY - 2021 U6 - https://doi.org/10.1016/j.atmosenv.2021.118449 SN - 1352-2310 VL - 256 SP - 118449 PB - Elsevier Ltd. AN - OPUS4-52626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Hofmann, Michael A1 - El Bari, N. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Wastewater monitoring by means of e-nose, VE-tongue, TD-GC-MS, and SPME-GC-MS N2 - The presence of wastewater and air pollution has become an important risk factor for citizens, not only in terms of problems related to health risks, but also because of its negative impact on the country's image. For this reason, malodorous emission monitoring and control techniques are in high demand in urban areas and industries. The aim of this work is first to build an electronic nose (e-nose) and a Voltammetric Electronic tongue (VE-tongue) in order to study their ability to discriminate between polluted and clean environmental samples. Secondly, Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS), and Solid Phase Micro Extraction-Gas Chromatography–Mass Spectrometry (SPME-GC-MS) are utilized to explain this discrimination by identifying specific compounds from these samples. Indeed, the e-nose, consisted of metal oxide semiconductor gas sensors, is used for the assessment of the studied odorous air and headspace samples from water and wastewater sites. Moreover, the VE-tongue, based on metal electrodes, is utilized to determine the patterns of the sensor array responses, which serve as fingerprints profiles of the analyzed liquid samples. Chemometric tools, such as Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Support Vector Machines (SVMs) are operated for the processing of data from the e-nose and the VE-tongue. By using the both systems, the analyses of headspace and liquid samples from the seven sites allow better discrimination. To explain the cause of the obtained discrimination, TD-GC-MS and SPME-GC-MS analyses are well performed to identify compounds related sites. According to these outcomes, the proposed e-nose and VE-tongue are proved to be rapid and valuable tools for analysis of environmental polluted matrices. KW - Wastewater KW - Electronic nose KW - Voltammetric electronic tongue KW - Thermal desorption-gas chromatography-mass spectrometry KW - Solid phase micro extraction-gas chromatography–mass spectrometry PY - 2021 U6 - https://doi.org/10.1016/j.talanta.2020.121450 VL - 221 SP - 121450 PB - Elsevier B.V. AN - OPUS4-51099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ullner, Christian A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Uncertainty of Elastoplastic Material Parameters Calculated from the Spherical Indentation in the Macro Range N2 - The applicability of three methods developed by finite element analysis (FEM) and proposed in the literature are studied on steel S355. Instrumented indentation tests using spherical indenters of radius 200 and 500 μ m are performed in the macro range at depths of more than 6 μ m. The results of the selected methods are compared with the tensile test. To evaluate the partially strongly varying results, the uncertainties of the calculated strain hardening exponent, n, and yield stress, Y, are estimated. Recommendations for an appropriated procedure of the indentation test are given. The machine compliance and the determination of the zero point of Depth play an essential role. If the certain conditions are considered, the instrumented indentation Tests can be used, in particular for investigations of specimens with inhomogeneous elastoplasticity. KW - Indentation KW - Elastoplastic material parameters KW - Uncertainty PY - 2021 U6 - https://doi.org/10.1520/JTE20200683 SN - 0090-3973 VL - 49 IS - 6 SP - 4576 EP - 4592 PB - ASTM International AN - OPUS4-52416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Bayat, Mehmet E. A1 - Bartholmai, Matthias T1 - Identifizierung und Bewertung von Einflussgrößen bei der Sprengstoffspuren-detektion durch Ionenmobilitätsspektrometrie N2 - IMS trägt zur Luftfrachtsicherheit bei Luftsicherheitsgesetze verpflichten Luftsicherheitsbehörden, Flughafenbetreiber und Fluggesellschaften umfassende Sicherheitsmaßnahmen auf den Flughäfen zu ergreifen, um Gefahren z. B. durch potenziell gefährliche Frachtgüter zu erkennen. Von der Europäische Zivilluftfahrt-Konferenz (ECAC) zertifizierte IMS-Geräte werden vor Ort an den Kontrollpunkten orthogonal zur Radiologie eingesetzt, um chemische Informationen von verdächtiger Fracht über Gefahrstoffe wie Sprengstoffe oder Drogen vor dem Verladen zu erhalten. Vor der Detektion von Sprengstoffen beginnt die Untersuchung eines verdächtigen Objekts mit der Probenahme mittels Wischprobensammlern. Eine Luftsicherheitskontrollkraft wischt dabei Oberflächen des Objekts mit einem Probensammler ab, um Partikel von Gefahrstoffen zu sammeln. Der beladene Probensammler wird anschließend in einen Probeneinlass eingeführt. Nach thermischer Desorption der gesammelten Stoffe erhält der Bediener (z. B. Luftsicherheitskontrollkraft) ein boolesches Ergebnis - "Alarm" oder "Kein Alarm". Verfahren und Ergebnisse In dieser Studie wurden drei Verfahren mit vier ECAC-zertifizierten ETD-Geräten zur Identifizierung und Beurteilung der Probenahme (PN) entwickelt: I) direkte PN durch lösemittelbasierten Auftrag einer bekannten Sprengstoffmenge auf einem Probensammler, II) Auftrag einer bekannten Menge eines gelösten Sprengstoffs auf einem 10 cm × 10 cm Substrat (Aluminium, Papier, Eisen und Polyvinylchlorid) und manuelle PN nach Lösemittelverdampfung, III) lösemittelbasierter Sprengstoffauftrag auf eine PTFE- oder PTFE-beschichtete Glasfaseroberfläche, nach Lösemittelverdunstung trockene Übertragung auf das zu beprobende Substrat zur PN. Der Zusammenhang zwischen vorgelegter Sprengstoffmenge und der Detektionswahrscheinlichkeit (POD) erfolgt durch Anwendung des binären Regressionsverfahrens mit einer Logit-Funktion: POD=1/(1+exp⁡(-A(m-B)) )·100% Dabei entspricht m der vorgelegten Sprengstoffmasse bis 1000 ng, Parameter A / ng-1 der logistischen Wachstumsrate der Kurve und Parameter B / ng dem m-Wert des Mittelpunktes des Sigmoids. Die Bestimmung der Parameter wurde nach der Methode der kleinsten Quadrate berechnet. Das entwickelte Messunsicherheitsmodell kombiniert quantitative Ergebnisse aus Stammlösung und deren Verdünnungen sowie Stoffauftrag und qualitative Ergebnisse nach Anzeige "Alarm" oder "Kein Alarm". Dieses Auswerteverfahren wurde auf die Probenahme angewandt. Identifizierte Unsicherheitsursachen sind die Durchführung der Wischprobenahme, Staub, Lösemitteleffekte und die Unsicherheit bei der Herstellung von Testlösungen. T2 - 8. Ionenmobilitätsspektrometrie (IMS)-Anwendertreffen CY - Online meeting DA - 17.03.2021 KW - IMS KW - Ionenmobilitätsspektrometrie KW - Ion mobility spectrometry KW - Sprengstoffspurendetektion KW - Luftfrachtsicherheit PY - 2021 UR - https://www.uni-potsdam.de/de/ims2021/tagungsprogramm AN - OPUS4-52474 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Melzer, Michael A1 - Fischer, Michael A1 - Thomas, Marcus A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Calibration Service as a Gateway to Sustainable Research and Development N2 - Over decades, the German Federal Institute for Materials Research and Testing (BAM) has established a sophisticated calibration laboratory for force, temperature and electrical quantities. Since more than 15 years it is accredited, currently by the national accreditation body (DAkkS), and offers its service also to external entities on a global scale. As a public provider, we are furthermore committed to research and development activities that demand measurements with highest quality and low level of uncertainties. Two R&D examples are highlighted within this contribution. T2 - SMSI 2020 CY - Meeting was canceled DA - 22.06.2020 KW - Calibration of force KW - Calibration of temperature KW - Calibration of electrical quantities KW - Measurement uncertainty KW - New sensor principles PY - 2020 SN - 978-3-9819376-2-6 U6 - https://doi.org/10.5162/SMSI2020/E3.3 SP - 374 EP - 375 AN - OPUS4-51222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tiebe, Carlo A1 - Bayat, Mehmet E. A1 - Bartholmai, Matthias T1 - Unsicherheit bei der Probenahme von Sprengstoffspuren und Detektion durch Ionenmobilitätsspektrometrie N2 - IMS trägt zur Luftfrachtsicherheit bei Geltende Luftsicherheitsgesetze verpflichten Luftsicherheitsbehörden, Flughafenbetreiber und Fluggesellschaften umfassende Sicherheitsmaßnahmen auf den Flughäfen zu ergreifen, um die Gefahr möglicher terroristischer Bedrohungen zu erkennen und zu verhindern. Wenn ein verdächtiges Objekt durch Röntgenstrahlen identifiziert wurde, kann die IMS als schnelles Analyseverfahren vor Ort orthogonal zur Radiologie eingesetzt werden, um chemische Informationen über Gefahrstoffe wie Sprengstoffe oder Drogen vor dem Abflug zu erhalten. Vor der Detektion von Sprengstoffen beginnt die Untersuchung eines verdächtigen Objekts mit der Probenahme mittels Wischprobensammlern. Eine Luftsicherheitskontrollkraft wischt dabei Oberflächen des Objekts mit einem Probensammler ab, um Partikel von Gefahrstoffen zu sammeln. Der beladene Probensammler wird anschließend in einen Probeneinlass eingeführt. Nach thermischer Desorption der gesammelten Stoffe erhält der Bediener (z. B. Luftsicherheitskontrollkraft) ein boolesches Ergebnis - "Alarm" oder "Kein Alarm". Verfahren und Ergebnisse In dieser Studie wurden drei Verfahren mit vier ECAC-zertifizierten ETD-Geräten zur Entwicklung eines Unsicherheitskonzeptes bezüglich der Probenahme (PN) angewandt: I) direkte Probenaufnahme durch lösemittelbasierten Auftrag einer bekannten Sprengstoffmenge auf einem Probensammler, II) Auftragung einer bekannten Menge eines gelösten Sprengstoffs auf einem 10 cm × 10 cm Substrat (Aluminium, Papier, Eisen und Polyvinylchlorid) und manuelle PN nach Lösemittelverdampfung, III) lösemittelbasierter Sprengstoffauftrag auf eine PTFE- oder PTFE-beschichtete Glasfaseroberfläche, nach Lösemittelverdunstung trockene Übertragung auf das zu beprobende Substrat zur PN. Nach dem binären Regressionsverfahren wurde die funktionale Abhängigkeit der Detektionswahrscheinlichkeit von einer bekannten Sprengstoffmasse mit einer Logit-Funktion beschrieben: POD=1/(1+e^(-A·(m-B))). Dabei ist POD die Wahrscheinlichkeit der Detektion für eine bekannte Sprengstoff-Masse, die Parameter A (logistische Wachstumsrate der Kurve) und B (m-Wert des Mittelpunktes des Sigmoids) sind geschätzte Parameter nach der Methode der kleinsten Quadrate, und m ist die Sprengstoffmasse. Das entwickelte Messunsicherheitsmodell kombiniert quantitative Ergebnisse aus Wägen, Lösen und Pipettieren sowie qualitative Ergebnisse - "Alarm" oder "Kein Alarm" und die Unsicherheit der PN. Identifizierte Unsicherheitsursachen sind die Durchführung der Wischprobenahme, Staub, Lösemitteleffekte und die Unsicherheit bei der Herstellung von Testlösungen. T2 - 8. IMS-Anwendertreffen CY - Potsdam, Germany DA - Veranstaltung wurde abgesagt - Meeting was cancelled KW - IMS KW - Ionenmobilitätsspektrometrie KW - Wischprobenahme KW - binäres Regressionsverfahren KW - ETD KW - Sprengstoffspurendetektion PY - 2020 VL - 2020 SP - 9 EP - 9 PB - Universität Potsdam CY - Potsdam AN - OPUS4-51136 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Johann, Sergej A1 - Mansurova, M. A1 - Kohlhoff, Harald A1 - Tiebe, Carlo A1 - Bell, Jérémy A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Semi-automatic Measurement Device for Long-Term Monitoring of Ammonia in Gas Phase N2 - The present paper describes the development of a sensor material that changes its fluorescence in the presence of gaseous ammonia in a relevant concentration range. The implementation into a semi-automatic gas measurement device enables low-cost, precise, simple and fast monitoring of low con-centrations of harmful gases, like ammonia, and hence can help to improve the climate monitoring in livestock housing, barns or stables. T2 - SMSI 2020 CY - Meeting was canceled KW - Spectroscopy KW - Emmbedded sensor KW - Environment KW - Air quality PY - 2020 U6 - https://doi.org/10.5162/SMSI2020/B5.4 SP - 133 EP - 134 AN - OPUS4-50867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Lapalus, Antoin A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Design and Implementation of Smart Multisensor Monitoring System for Safe Workplaces with LoRaWAN N2 - This project addresses the application of safe workplaces in offices and chemical laboratories where indoor air quality plays an important role. The LoRaWAN (Long Range Wide Area Network) is used as a communication interface to make important sensor data globally accessible. The goal of the development is to create a sensor node and an online and offline solution that collects the data from the sensor nodes and stores it on a local server or in a cloud. In cooperation with the companies WISTA GmbH and IONOS, a test sensor network is going to be established in the Berlin-Adlershof area. T2 - SMSI 2020 CY - Meeting was canceled DA - 22.06.2020 KW - Smart sensors KW - Air quality monitoring KW - LoRaWAN KW - VOC KW - Multisensor system PY - 2020 U6 - https://doi.org/10.5162/SMSI2020/E5.4 SP - 388 EP - 389 AN - OPUS4-50878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Zemčík, R. ED - Krystek, J. T1 - Influence of rotor downwash on vertically displaced nanobots in flight N2 - One challenge associated with navigating a nano aerial robot swarm indoors in unstructured environments is, i.a., the limited air space. To avoid an over-regulation of the available indoor air space (e.g., prohibit copters to fly above each other), a safety region around each copter must be defined. In this paper, we investigate the impact of the downwash of a nano-drone on the stability of another nearby nano-drone. In the experiments, we found out that this downwash has a negative influence of a second nano-drone in a distance of around 1 m vertically and 0.2 m horizontally. Based on the obtained data, we developed a model describing the above-mentioned safety region to enable a safe operation of the swarm in these environments with fewer constraints. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm KW - Collision-free navigation KW - Safety region model PY - 2020 U6 - https://doi.org/10.1016/j.matpr.2020.03.047 VL - 32 IS - 2 SP - 108 EP - 111 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Zimmek, David A1 - Bartholmai, Matthias T1 - Smart electronic helper for long-term monitoring of bridges and building structures N2 - Increasing traffic volume on the one hand and ageing infrastructure on the other hand have created many new challenges for maintenance and structural health monitoring of roads and bridges. In the past, many bridges and road structures have been neglected, often resulting in traffic congestion, road closure, and increased repair costs. This research is concerned with the development of a system to improve the challenge of maintenance and early detection of damage, particularly moisture penetration and corrosion of steel reinforced concrete components. The objective is to develop a method that will also work after 30 years and longer. Many new IoT solutions are equipped with internal energy storage elements (accumulators or batteries) which are inappropriate here, since most relevant signs of concrete degradation occur after decades, where the functioning of such elements are more than questionable. The presented technology approach uses radio-frequency identification (RFID) and enables connectivity to sensors. It offers the advantage of an passive, completely independent energy supply without any energy storage components. Since the system should be permanently embedded in concrete, it is crucial to develop a long-term stable device which is adapted to the environmental influences of the structure, e.g., long-term resistance in very alkaline environment of pH 13. In numerous experiments, the robustness of the system was tested and evaluated. Various tests with encapsulations to protect the electronics were performed, and for long-term validation different concrete specimens were instrumented with RFID-sensor-systems. Their operating time is now around two years and investigations for signs of fatigue and damage to the encapsulation and the electronics are ongoing. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Sensors KW - Passive RFID KW - Smart structures KW - SHT KW - Long term monitoring PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-501931 UR - https://www.ndt.net/?id=25011 SN - 1435-4934 VL - 25 IS - 1 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-50193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartelmeß, Jürgen A1 - Zimmek, David A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph A1 - Schäferling, M. T1 - Fibre optic ratiometric fluorescence pH sensor for monitoring corrosion in concrete N2 - In this communication a novel concept for pH sensing is introduced which is specifically adapted to monitor carbonation induced corrosion in concrete structures. The method is based on a ratiometric measurement principle, exploiting the pH sensitive colour switching of thymol blue in the basic pH regime and the emissive properties of two different (Zn)CdSe/ZnS core shell quantum dots. The transition point of thymol blue in a Hydrogel D4 matrix was determined to be at around pH 11.6, which fits ideally to the intended application. Next to the fundamental spectroscopic characterization of the ratiometric response, a new design for a sensor head, suitable for the incorporation into concrete matrices is presented. Toward this, a manufacturing process was developed which includes the preparation of a double layer of polymers containing either thymol blue or a quantum dot mixture inside a porous ceramic tube. Results of a proof-of-priciple performance test of the sensor head in solutions of different pH and in cement specimens are presented, with encouraging results paving the way for future field tests in concrete. KW - Fiber optic sensing KW - PH monitoring in concrete KW - Embedded sensors KW - Ratiometric fluorescence PY - 2020 U6 - https://doi.org/10.1039/c9an02348h VL - 145 IS - 6 SP - 2111 EP - 2117 PB - Royal Society of Chemistry AN - OPUS4-50381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In this paper, we introduce a nano aerial robot swarm for indoor air quality monitoring applications such as occupational health and safety of (industrial) workplaces. The concept combines a robotic swarm composing of nano Unmanned Aerial Vehicles (nano UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight metal oxide gas sensors for measuring the Total Volatile Organic Compound (TVOC) in ppb and estimating the eCO2 (equivalent calculated carbon-dioxide) concentration in ppm. TVOC is a measure for the indoor air quality. An indoor localization and positioning system will be used to estimate the absolute 3D position of the swarm like GPS. Based on this novel indoor air quality monitoring concept, the development and validation of new algorithms in the field of Mobile Robot Olfaction (MRO) are planned, namely gas source localization and gas distribution mapping. A test scenario will be built up to validate and optimize the gas-sensitive nano aerial robot swarm for the intended applications. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Nano aerial robot KW - UAV KW - Swarm KW - Indoor air quality KW - Monitoring KW - Concept PY - 2019 U6 - https://doi.org/10.1016/j.matpr.2019.03.151 SN - 2214-7853 VL - 12 IS - 2 SP - 470 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 18th International Symposium on Olfaction and Electronic Nose CY - Fukuoka, Japan DA - 26.05.2019 KW - Nano aerial robot KW - Swarm KW - Indoor air quality KW - Monitoring PY - 2019 SN - 978-1-5386-3641-1 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-48148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Zemčík, Robert ED - Krystek, Jan T1 - Influence of rotor downwash on vertically displaced nanobots in flight N2 - Using a swarm of copter-based gas-sensitive aerial nano robots for monitoring indoor air quality is challenging due to, e.g., limited air space in buildings. To avoid an over-regulation of the available indoor air space (e.g., prohibit copters to fly above each other), a safety region around each copter must be defined to guarantee a safe operation of the swarm. The key contributions of this paper are the realization of experiments that investigate the influence of the rotor downwash on flying vertically displaced nano robots and the development of a model describing the above-mentioned safety region. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Gas sensing KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm PY - 2019 SP - 23 EP - 24 CY - Plzeň AN - OPUS4-49173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Scheuschner, Nils A1 - Bartholmai, Matthias A1 - Lilienthal, A.J. T1 - Experimental Validation of the Cone-Shaped Remote Gas Sensor Model N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or hardly accessible areas. A challenging task, however, is the generation of threedimensional distribution maps from these gas measurements. Suitable reconstruction algorithms can be adapted, for instance, from the field of computed tomography (CT), but both their performance and strategies for selecting optimal measuring poses must be evaluated. For this purpose simulations are used, since, in contrast to field tests, they allow repeatable conditions. Although several simulation tools exist, they lack realistic models of remote gas sensors. Recently, we introduced a model for a Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor taking into account the conical shape of its laser beam. However, the novel model has not yet been validated with experiments. In this paper, we compare our model with a real sensor device and show that the assumptions made hold. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - Remote gas sensor model KW - TDLAS KW - Gas dispersion simulation PY - 2019 SN - 978-1-7281-1634-1 SP - 104 EP - 107 PB - IEEE AN - OPUS4-49548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Scheuschner, Nils A1 - Lilienthal, A.J. T1 - Experimental Validation of the Cone-Shaped Remote Gas Sensor Model N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or hardly accessible areas. A challenging task, however, is the generation of threedimensional distribution maps from these gas measurements. Suitable reconstruction algorithms can be adapted, for instance, from the field of computed tomography (CT), but both their performance and strategies for selecting optimal measuring poses must be evaluated. For this purpose simulations are used, since, in contrast to field tests, they allow repeatable conditions. Although several simulation tools exist, they lack realistic models of remote gas sensors. Recently, we introduced a model for a Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor taking into account the conical shape of its laser beam. However, the novel model has not yet been validated with experiments. In this paper, we compare our model with a real sensor device and show that the assumptions made hold. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - Remote gas sensor model KW - TDLAS KW - Gas dispersion simulation PY - 2019 AN - OPUS4-49549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Bartholmai, Matthias T1 - Smart RFID Sensors Embedded in Building Structures for Early Damage Detection and Long-Term Monitoring N2 - In civil engineering, many structures are made of reinforced concrete. Most Degradation processes relevant to this material, e.g., corrosion, are related to an increased level of material moisture. Therefore, moisture monitoring in reinforced concrete is regarded as a crucial method for structural health monitoring. In this study, passive radio frequency identification (RFID)-based sensors are embedded into the concrete. They are well suited for long-term operation over decades and are well protected against harsh environmental conditions. The energy supply and the data transfer of the humidity sensors are provided by RFID. The sensor casing materials are optimised to withstand the high alkaline environment in concrete, having pH values of more than 12. Membrane materials are also investigated to identify materials capable of enabling water vapour transport from the porous cement matrix to the embedded humidity sensor. By measuring the corresponding relative humidity with embedded passive RFID-based sensors, the cement hydration is monitored for 170 days. Moreover, long-term moisture monitoring is performed for more than 1000 days. The Experiments show that embedded passive RFID-based sensors are highly suitable for long-term structural health monitoring in civil engineering. KW - RFID based sensors KW - Embedded sensors KW - Corresponding relative humidity KW - Porous building materials KW - Reinforced concrete KW - Corrosion KW - Civil engineering PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-500831 VL - 19 IS - 24 SP - 1 EP - 18 PB - MDPI CY - Basel, Swiss AN - OPUS4-50083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias A1 - Bennetts, V. H. A1 - Lilienthal, A. J. T1 - Remote Gas Sensing with Multicopter-Platforms N2 - This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization and gas distribution mapping. T2 - Zweites Innovationsforum "Autonome, mobile Dienste; Services für Mobilität" CY - Berlin, Germany DA - 04.06.2019 KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS); UAV-REGAS KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Nano UAV Swarm KW - Tomographic reconstruction of gas plumes PY - 2019 UR - http://modisem.de/files/Ereignisse/2019-06/Innovationsforum_Downloads/IF2_2019_Tagungsband_WEB.pdf SN - 978-3-942709-22-4 N1 - Tagungsband auf Deutsch, Beitrag auf Englisch. VL - 2019 SP - 24 EP - 34 AN - OPUS4-48699 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Dzierliński, M. A1 - Lilienthal, A. J. A1 - Bartholmai, Matthias T1 - Aerial-based gas tomography – from single beams to complex gas distributions N2 - In this paper, we present and validate the concept of an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor with a 3-axis aerial stabilization gimbal for aiming at a versatile octocopter. While the TDLAS sensor provides integral gas concentration measurements, it does not measure the distance traveled by the laser diode’s beam nor the distribution of gas along the optical path. Thus, we complement the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from a set of integral concentration measurements. To allow for a fundamental ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present results showing its performance characteristics and 2D plume reconstruction capabilities under realistic conditions. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). KW - Aerial robot olfaction KW - Mobile robot olfaction KW - Gas tomography KW - TDLAS KW - Plume PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-487843 SP - 1 EP - 16 PB - Taylor & Francis CY - London AN - OPUS4-48784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Wu, Cheng-Chieh A1 - Strangfeld, Christoph T1 - KonSens - RFID embedded² systems in concrete – validation experiments N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Passive RFID KW - RFID sensors KW - Sensors in concrete KW - Smart structures KW - Structural health monitoring PY - 2019 AN - OPUS4-48790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Wu, Cheng-Chieh A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel T1 - 3D-Gestalts- und -Verformungsmessung - Anwendungsbeispiele N2 - Der Fokus des Arbeitsfelds ist die messtechnisch fundierte Anwendung der 3D-Verfahrenskombination zur Lösung vielfältiger Messaufgaben mit optimaler Datenqualität für interne und externe Kunden. Das setzt insbesondere eine jeweils problembezogene Messmethodik voraus. Dazu setzen wir kameragestützte 3D-Koordinatenmessverfahren ein, die auf dem fotogrammetrischen Prinzip der Bildtriangulation beruhen. Darunter fallen folgende miteinander flexibel kombinierbare Verfahrensmodifikationen: Mehrbildfotogrammetrie, Messadapter für Geometriemerkmale, Streifenprojektionsverfahren, statische bis hochdynamische Stereofotogrammetrie auf Punktebasis oder aufgabenangepasster Oberflächenmuster und mechanisch-optische Taster. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - 3D-Verformungsmessung KW - Koordinatenmessung KW - Verschiebungsfeld PY - 2019 AN - OPUS4-48791 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Fukuoka, Japan DA - 26.05.2019 KW - Indoor air quality KW - Nano aerial robot KW - Aerial robot olfaction KW - Swarm KW - Gas detector PY - 2019 SN - 978-1-5386-8327-9 SN - 978-1-5386-8328-6 U6 - https://doi.org/10.1109/ISOEN.2019.8823496 SP - 1 EP - 3 PB - IEEE AN - OPUS4-48920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Zimmek, David A1 - Bartholmai, Matthias ED - Helmerich, Rosemarie ED - Ilki, A. ED - Motavalli, M. T1 - Smart electronic helper for long-term monitoring of bridges and building structures N2 - Increasing traffic volume on the one hand and ageing infrastructure on the other hand have created many new challenges for maintenance and structural health monitoring of roads and bridges. In the past, many bridges and road structures have been neglected, often resulting in traffic congestion, road closure, and increased repair costs. This research is concerned with the development of a system to improve the challenge of maintenance and early detection of damage, particularly moisture penetration and corrosion of steel reinforced concrete components. The objective is to develop a method that will also work after 30 years and longer. Many new IoT solutions are equipped with internal energy storage elements (accumulators or batteries) which are inappropriate here, since most relevant signs of concrete degradation occur after decades, where the functioning of such elements are more than questionable. The presented technology approach uses radio-frequency identification (RFID) and enables connectivity to sensors. It offers the advantage of an passive, completely independent energy supply without any energy storage components. Since the system should be permanently embedded in concrete, it is crucial to develop a long-term stable device which is adapted to the environmental influences of the structure, e.g., long-term resistance in very alkaline environment of pH 13. In numerous experiments, the robustness of the system was tested and evaluated. Various tests with encapsulations to protect the electronics were performed, and for long-term validation different concrete specimens were instrumented with RFID-sensor-systems. Their operating time is now around two years and investigations for signs of fatigue and damage to the encapsulation and the electronics are ongoing. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Long term monitoring KW - Passive RFID KW - SHM KW - Sensors KW - Smart structures PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489890 SP - 1 EP - 6 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Gawlitza, Kornelia A1 - Bell, Jérémy A1 - Mansurova, Maria A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Semi-automatic Gas Measurement Device Based on Fluorescent Multi-gas Sensors N2 - This paper describes the development of a semi-automatic gas measurement device presenting potentially a broad range of applications, noteworthy in the agricultural sector. Non-reversible fluorescent molecular sensors were designed and syn-thesized. Upon, integration into a hydrogel matrix with an optimal ratio of co-solvents, the sensors reacting selectively to ammonia were illuminated by excitation light to produce a concentration-correlated fluorescence emission. An automated mechanical-elec-trical device initiates a given gas mixture and thus simulates con-centrations similar to a threshold value. The aim of this project is to develop a sensor or a low-cost method which can monitor low concentrations of harmful gases and aid in their elimination or regulation in livestock housing, barns or stables. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - gas analysis KW - fluorescence KW - embedded sensor KW - spectroscopy KW - environment KW - agricultural economy PY - 2019 SN - 978-1-7281-1634-1 SP - 88 EP - 92 PB - IEEE AN - OPUS4-49506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Tiebe, Carlo T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Gas sensing KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm PY - 2019 AN - OPUS4-47799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Aerial robot KW - Gas tomography KW - Plume KW - TDLAS PY - 2019 AN - OPUS4-47800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Tiebe, Carlo T1 - KonSens (Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung) - Projektergebnisse N2 - Im Projekt KonSens werden für die Anwendungsbeispiele bauteilintegrierte Sensorik für Betonkomponenten und mobile Multigassensorik Sensorsysteme in Form von Funktionsmustern entwickelt, validiert und angewendet. Schwerpunkte liegen einerseits in der Detektion und Bewertung von Korrosionsprozessen in Beton und andererseits in der Detektion und Quantifizierung sehr geringer Konzentrationen toxischer Gase in der Luft. Dabei ist die Adaption der sensorischen Methoden aus dem Labor in reale Messumgebungen inklusive geeigneter Kommunikationstechnik ein wichtiger Aspekt. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Umweltmonitoring KW - Bauwerksüberwachung KW - RFID-Sensorsysteme KW - pH-Sensor KW - Fluoreszenzsensoren PY - 2019 AN - OPUS4-47763 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Paul, Niels A1 - Lilienthal, A. J. T1 - Wind Vector Estimation on Multirotor Aircraft N2 - An equation for wind vector estimation using a multirotor aircraft as a flying anemometer is shown. To compute the wind vector an estimate of the thrust of the aircraft is required, which is related to the rotational speed of the rotors. Hence, a sensing system for the rotational speed using phototransistors is presented. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Anemometer KW - Phototransistor KW - Thrust KW - Wind PY - 2019 AN - OPUS4-47801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jacobasch, Stefan A1 - Duffner, Eric A1 - Goedecke, Thomas A1 - Portella, Pedro Dolabella A1 - Mair, Georg A1 - Schendler, Thomas A1 - Gradt, Thomas A1 - Askar, Enis A1 - Bartholmai, Matthias A1 - Schröder, Volkmar A1 - Maiwald, Michael A1 - Holtappels, Kai A1 - Tschirschwitz, Rico A1 - Neumann, Patrick P. T1 - Unser Beitrag zum Thema Wasserstoff N2 - Die BAM ist nahezu über die gesamte Wertschöpfungskette hinweg wissenschaftlich tätig. Von der sicheren und effizienten Wasserstofferzeugung (POWER-to-GAS), über die (Zwischen-)Speicherung von Wasserstoff in Druckgasspeichern bis hin zum Transport bspw. mittels Trailerfahrzeug zum Endverbraucher. Komplettiert werden die Aktivitäten der BAM durch die sicherheitstechnische Beurteilung von wasserstoffhaltigen Gasgemischen, die Verträglichkeitsbewertung von Werkstoffen bis hin zur Detektion von Wasserstoffkonzentrationen über geeignete Sensorik, auch mittels ferngesteuerter Messdrohnen (sog. UAV-Drohnen). Zudem untersucht die BAM proaktiv Schadensrisiken und Unfallszenarien für die Sicherheitsbetrachtung, um mögliche Schwachstellen aufzeigen und potenzielle Gefährdungen erkennen zu können. KW - Wasserstoff KW - Wasserstofferzeugung KW - Energiespeicherung KW - Gasdetektion KW - Risikoanalyse KW - Power-to-Gas KW - Explosionsschutz KW - Tribologie KW - Druckgasspeicher KW - Glasspeicher KW - Gassensorik KW - Mini-UAV PY - 2019 SP - 1 CY - Berlin AN - OPUS4-47960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Weise, Matthias A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Basedau, Frank A1 - Hofmann, Detlef A1 - Schukar, Vivien T1 - Faser-basierter magneto-optischer Schicht-Sensor zum Monitoring von Bauteilen N2 - In Glasfasern eingeschriebene Bragg-Gitter (FBG: fibre-based Bragg gratings) sind über die Verschiebung der Bragg-Wellenlänge in der Lage, Stauchungen und Dehnungen von Glasfasern hochgenau zu erfassen. In Kompositwerkstoffe eingebettete faseroptische Sensoren können Bauteile bezüglich ihrer mechanischen Integrität überwachen und früh-zeitig Informationen über Materialveränderungen gewinnen. Um die Zuverlässigkeit eines solchen Sensors zu gewährleisten, ist es wichtig, die korrekte Funktion des Sensors im Verbund mit der Werkstoff-Matrix on-line und in-situ sicherzu-stellen. Im Rahmen des DFG-Projekts FAMOS² (FAser-basierter Magneto-Optischer SchichtSensor) wurde ein selbstdiagnosefähiger Schichtsensor entwickelt, der mit Hilfe von magnetostriktiven Aktorschichten aus Nickel bzw. Eisen-Nickel validiert werden kann. Der FAMOS²-Schichtsensor wird durch ein PVD (physical vapour deposition)/ECD (electro-chemical deposition) Hybridschichtsystem realisiert, das auf dem Fasermantel im Bereich des FBG haftfest, homogen und langzeitfunktional abzuscheiden ist. Dabei wird in einem ersten Schritt ein etwa 100 Nanometer dünnes PVD-Schichtsystem aus Chrom und Kupfer als Haftvermittler auf der Glasfaser bzw. als leitfähige Startschicht für den nachfolgenden ECD-Prozess abgeschieden. Um eine rotationssymmetrische Schich-tabscheidung zu gewährleisten, erfolgt während der PVD-Beschichtung eine Rotation der Glasfasern. In einem zweiten Schritt wird dann unter Verwendung eines klassischen Watts-Elektrolyten in einer speziell entwickelten ebenfalls rotationssymmetrisch aufgebau-ten ECD-Durchströmungszelle dann die etwa 30 Mikrometer dicke, magnetostriktive Ak-torschicht auf dem PVD-Schichtsystem abgeschieden, im Vergleich sowohl reine Nickel-Schichten als auch Nickel-Eisen-Schichten. Ein äußeres Magnetfeld dehnt die magnetostriktive Aktorschicht und damit auch die Faser reversibel. Diese Dehnung führt zu einer Verschiebung der Bragg-Wellenlänge, welche direkt mit der Stärke eines zu messenden oder zu Validierungszwecken vorgegebenen Magnetfeldes korreliert. Die Anpassung der Beschichtungsverfahren an die Fasergeome-trie und die mechanischen Eigenschaften der Hybridschichten werden hinsichtlich der me-chanischen Integrität des faseroptischen Sensors diskutiert und der Nachweis der Selbst-diagnosefähigkeit erbracht. T2 - 13. ThGOT Thementage Grenz- und Oberflächentechnik und 11. Thüringer Biomaterial-Kolloquium CY - Zeulenroda, Germany DA - 13.03.2018 KW - Magneto-optischer Sensor KW - Faser-Bragg Gitter KW - Magnetostriktive Beschichtung KW - Selbstkalibrierung KW - Bauteilmonitoring PY - 2018 SN - 978-3-00-058187-8 SP - 1 EP - 5 CY - Jena AN - OPUS4-44599 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manolov, Manol A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Bestimmung der Maschinennachgiebigkeit beim Einsatz sphärischer Indenter in der Instrumentierten Eindringprüfung N2 - Es wird ein vereinfachtes Verfahren für die Bestimmung und Implementierung der Maschinennachgiebigkeit bei der Verwendung eines sphärischen Indenters dargestellt. Die Maschinennachgiebigkeit wird bei deutlicher Kraftabhängigkeit als Funktion der Kraft in die Auswertung implementiert. Als sensitiver Kennwert dient der aus der instrumentierten Eindringprüfung an Härtevergleichsplatten ermittelte Eindringmodul. T2 - Sensoren und Messsysteme CY - Nürnberg, Germany DA - 26.06.2018 KW - Maschinennachgiebigkeit KW - Instrumentierte Eindringprüfung KW - Sphärische Indenter KW - Vereinfachtes Verfahren KW - Kraftabhängige Funktion KW - Härtevergleichsplatten KW - Eindringmodul PY - 2018 SN - 978-3-8007-4683-5 SN - 0932-6022 VL - 19. ITG/GMA-Fachtagung SP - 565 EP - 569 PB - VDE Verlag GmbH CY - Berlin AN - OPUS4-45394 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter T1 - Temperature characteristics of a piezoresistive accelerometer for high impact shock application N2 - This study presents the characterization of a piezoresistive accelerometer damped with silicon oil for the application in drop tests carried out at BAM. Experiments were performed with the Hopkinson Bar method in close correlation to the real-world application conditions. The results point out certain limitations regarding the temperature influence and the frequency response. Additional experiments were performed with a gas damped type of piezoresistive accelerometer, which has superior specifications, particularly for low temperatures. The results allow for a comparison. T2 - Sensoren und Messsysteme CY - Nürnberg, Germany DA - 26.06.2018 KW - Piezoresistive accelerometer KW - Hopkinson bar KW - High impact shock application KW - Temperature characteristics KW - Drop test PY - 2018 AN - OPUS4-45322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias ED - Werner, Klaus-Dieter T1 - Temperature characteristics of a piezoresistive accelerometer for high impact shock application N2 - This study presents the characterization of a piezoresistive accelerometer damped with silicon oil for the application in drop tests carried out at BAM. Experiments were performed with the Hopkinson Bar method in close correlation to the real-world application conditions. The results point out certain limitations regarding the temperature influence and the frequency response. Additional experiments were performed with a gas damped type of piezoresistive accelerometer, which has superior specifications, particularly for low temperatures. The results allow for a comparison. T2 - Sensoren und Messsysteme CY - Nürnberg, Germany DA - 26.06.2018 KW - Piezoresistive accelerometer KW - High impact shock application KW - Drop test KW - Temperature characteristics KW - Hopkinson bar PY - 2018 SN - 978-3-8007-4683-5 SN - 0932-6022 SP - 465 EP - 467 PB - VDE Verlag GmbH CY - Berlin AN - OPUS4-45323 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-44085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Banach, Ulrich A1 - Gawlitza, Kornelia A1 - Hübert, Thomas T1 - Development of a gas standard generator N2 - Pollution through emission of toxic gases is an increasing problem for the environment. It affects similarly agricultural, industrial and urban areas. In future, environmental emissions in ambient air must be monitored at even lower concentrations as nowadays. One environmental relevant compound is ammonia and its conversion product ammonium that have strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the range below 1000 nmol·mol 1 and thus there is a need for reliable traceable ammonia gas standards and in addition in situ analytical procedures for monitoring (in ambient air to avoid that thresholds are exceeded). Therefore, the use of reference materials is necessary for development accompanying test or for calibration, e. g. of structure-integrated sensors and mobile multi-gas sensors. The developed gas standard generator produces gas mixtures that comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range. The method is based on the permeation of ammonia through a membrane at constant temperature and pressure. The resulting ammonia penetrant gas flow is then mixed with a carrier gas flow to generate a gas standard flow of known concentration. The dynamic rage is enlarged by using a two dilution steps. Depending on the permeation rate, generable molar fractions are possible in the range nmol·mol-1 to a few µmol·mol-1. We present the design of an ammonia gas standard generator and first results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. The relative uncertainty of the generated ammonia gas standard is smaller than 4 % (k = 2). T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Permeation KW - Gas standard generator PY - 2018 AN - OPUS4-44089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Schütze, A. T1 - Sensor network deployment N2 - Content • Fixed monitoring stations • Mobile monitoring stations (on trams, buses, cars) • Personal mobile monitoring systems • Environmental monitoring for agriculture and beyond • Sensors on flying platforms T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Environmental monitoring KW - Gas sensors PY - 2018 AN - OPUS4-44073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo T1 - KonSens - Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung N2 - Im Projekt KonSens werden für die Anwendungsbei- spiele bauteilintegrierte Sensorik für Betonkomponen- ten und mobile Multigassensorik Sensorsysteme in Form von Funktionsmustern entwickelt, validiert und angewendet. Schwerpunkte liegen einerseits in der Detektion und Bewertung von Korrosionsprozessen in Beton und andererseits in der Detektion und Quantifi- zierung sehr geringer Konzentrationen toxischer Gase in der Luft. Dabei ist die Adaption der sensorischen Methoden aus dem Labor in reale Messumgebungen inklusive geeigneter Kommunikationstechnik ein wichtiger Aspekt. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Umweltmonitoring KW - Bauwerksüberwachung PY - 2018 AN - OPUS4-44074 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Johann, Sergej T1 - Adaptable multi-sensor device for gas detection N2 - Innovation is the catalyst for the technology of the future. It is important to develop new and better technologies that can continuously monitor the environmental impact, e.g., for air Quality control or emission detection. In the recently at BAM developed Universal Pump Sensor Control (UPSC3) module, different components and sensors are fused. The combination of the individual components makes the UPSC3 module an excellent monitoring and reference system for the development and characterization of gas specific sensors. Measurements over long periods are possible, for mixed gas loads or for certain gas measurements. The System is part of a mobile sensor network of several sensor units, which can also be used as standalone systems. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Environmental monitoring PY - 2018 AN - OPUS4-44077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Kinematic aspects of RAM packages drop tests N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Drop KW - Test KW - Measurement KW - Analysis KW - Prototyp PY - 2018 SP - Paper 18149, 1 EP - 12 AN - OPUS4-44872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schukar, Vivien A1 - Bartholmai, Matthias A1 - Beck, Uwe T1 - Abschlussbericht zum DFG-Projekt „FAMOS²“ FAser-basierter Magneto-Optischer SchichtSensor N2 - Der Mangel an Anwendungsrichtlinien und Validierungsverfahren für struktur-eingebettete faseroptische Dehnungssensoren, insbesondere auf Faser-Bragg-Gitter (FBG)-Basis, führte bislang dazu, dass diese Sensoren trotz ihrer hervorragenden Eigenschaften im Bereich der kommerziellen Material- und Strukturüberwachung nur in geringem Umfange eingesetzt wurden. Fragen zur Degradation der Sensoren unter Beanspruchung, Alterung durch klimatische Einflüsse und Enthaftung infolge Belastung der Struktur konnten bisher nur theoretisch simuliert oder anhand exemplarischer Proben für einzelne einflussnehmende Parameter im Labor untersucht werden. Die Erfassung des Sensorverhaltens im Bauteil unter komplexen Umwelteinflüssen während des Bauteilbetriebes, um damit eine Aussage zur Zuverlässigkeit der Sensormessdaten zu gewinnen, war bisher nicht möglich. Im Forschungsprojekt FAMOS² wurde deshalb von 2014 bis 2018 die Realisierung eines Autodiagnoseverfahrens für faseroptische Dehnungssensoren erarbeitet, um die Funktionszuverlässigkeit und Langzeitstabilität der Sensoren während des Bauteilbetriebes innerhalb einer Bauteilstruktur bewerten zu können. Im Rahmen des Forschungsprojektes wurde gezeigt, dass ein FBG-Sensor mit einer speziell angepassten magnetostriktiven Schicht magnetisch so angeregt werden kann, dass mit einer zugeschnittenen Messmethodik zu jedem Zeitpunkt eine Bewertung der Sensorzuverlässigkeit unter Betriebsbedingungen möglich ist. Die auf den Sensor aufgebrachte magnetostriktive Schicht erzeugt bei Anregung mit einem passenden Magnetfeld eine gepulste, synthetische Dehnung. Diese Dehnung steht in einem definierten Verhältnis zum anregenden Magnetfeld und wird optisch über die Verschiebung der Bragg-Wellenlänge ausgelesen. Die Konstanz dieses Verhältnisses stellt dann ein Maß für die korrekte Funktionsfähigkeit des Sensors dar. Das Beschichtungs-verfahren, das magnetische Anregungs- und optische Ausleseverfahren, wie auch die Validierung des Sensors unter Berücksichtigung faseroptischer Effekte wurden während des Projekts konzeptionell entwickelt, aufgebaut und charakterisiert. Qualitativ kann mit diesem Verfahren zunächst eine Gut-/Schlecht-Beurteilung des Sensors vorgenommen werden. Perspektivisch bietet das Verfahren jedoch auch die Möglichkeit, verschiedene Versagensmechanismen bestimmen und klassifizieren zu können. Es zeichnete sich schon während des Projektverlaufs ab, dass sich aus den erzielten Ergebnissen über das Autodiagnoseverfahren hinaus weitere Anwendungsmöglichkeiten für den Einsatz des kombinierten magnetostriktiv-faseroptischen Sensorprinzips, beispielsweise als reiner Magnetfeldsensor, ergeben. Nach Abschluss dieses Forschungsprojekts besteht nun die Möglichkeit, den Funktionszustand faseroptischer Dehnungssensoren jederzeit unabhängig von Alter, Belastung oder Kenntnis eines Referenzzustands zu einem bestimmten Zeitpunkt bestimmen zu können. Aufbauend auf diesen Ergebnissen können weiterführende Forschungen die Messmethodik vertiefend charakterisieren und weitere Anwendungsfälle erschließen. KW - Faser-Bragg-Gitter (FBG) KW - Sensorvalidierung KW - Magnetostriktive Beschichtung KW - Structural Health Monitoring (SHM) PY - 2018 N1 - Das Dokument unterliegt der Vertraulichkeit und kann nicht zugänglich gemacht werden - Projektlaufzeit: 01.04.2014 - 31.07.2018 The document is subject to confidentiality restrictions and cannot be made accessible - project runtime: 01.04.2014 - 31.07.2018 SP - 1 EP - 28 AN - OPUS4-50418 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzierliński, M. A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias ED - Zagrobelny, Maciej ED - Suś-Ryszkowska, Małgorzata T1 - Wykrywanie wycieków gazu za pomocą bezzałogowych pojazdów powietrznych T1 - Detection of gas leaks by unmanned aerial vehicles N2 - Wyciek metanu (CH4) z infrastruktury takiej jak rurociągi czy zbiorniki magazynowe ma kluczowe znaczenie dla środowiska oraz stwarza zagrożenie dla bezpieczeństwa ludzi i mienia. Obecnie, po okresie bezawaryjnej eksploatacji, można zaobserwować wzrost liczby incydentów spowodowanych nieszczelnościami rurociągów przesyłowych. W Polsce szczególnie problematyczne okazują się gazociągi, które powstały dekady temu. W tamtym czasie normy techniczne i przepisy budowlane były łagodniejsze niż obecnie obowiązujące. Integralność tych gazociągów jest trudna do skontrolowania, gdyż na etapie budowy nie zostały one przystosowane do badania tłokami pomiarowymi. Aby sprostać temu wyzwaniu, UDT poszukuje metod umożliwiających szybkie i niezawodne wykrywanie oraz lokalizowanie nieszczelności gazociągów na duże odległości. N2 - Methane leakage (CH4) from infrastructure such as pipelines or storage tanks is crucial for the environment and poses a threat to the safety of people and property. Today, after a period of failure-free operation, an increase in the number of incidents caused by leaks in transmission pipelines can be observed. In Poland, gas pipelines created decades ago turn out to be particularly problematic. At that time, technical standards and building regulations were milder than those currently in force. The integrity of these pipelines is difficult to control, as they were not adapted for testing with measuring pigs at the construction stage. To meet this challenge, UDT is looking for methods to quickly and reliably detect and locate leaks in pipelines over long distances. KW - Aerial robot KW - Mobile robot olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable diode laser absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 UR - https://www.udt.gov.pl/inspektor-on-line VL - 4 SP - 19 EP - 21 PB - Urząd Dozoru Technicznego CY - Warszawa, Polska AN - OPUS4-47062 LA - pol AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Gkertsos, Aris A1 - Neumann, Patrick P. A1 - Bell, Jérémy A1 - Bartholmai, Matthias T1 - Wireless Mobile Sensor Device for in-situ Measurements with Multiple Fluorescent Sensors N2 - This paper describes a wireless mobile prototype able to perform optical measurements by means of a miniatur-ized spectrometer for low light analysis, e.g. fluorescent sensors. Evaluations, calculations, calibration management and result display are performed by a computer or a standard tablet. The device was designed primarily to detect traces of oil in drinking or ground water and for the analyses of crude oils. However, it can also address a wide range of fluorescent sensors. The fast and user-friendly inspection of water quality or oil properties, as well as the adaptability and mobility, make the device attractive for a variety of users. Further application areas could be easily imple-mented by adapting the optics and the software (database, data processing and calibration plots, etc.) T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Wireless mobile sensor device KW - Fluorescent sensor KW - Embedded system KW - Water quality KW - Oil PY - 2018 SN - 978-1-5386-4707-3 SP - 1067 EP - 1070 PB - IEEE CY - New Delhi, India AN - OPUS4-46556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Wind Vector Estimation on Multirotor Aircraft N2 - Small unmanned aircraft (UA) are used increasingly as flying sensor platforms. Amongst other things they are used for environmental monitoring, for example gas distribution mapping. Sometimes, these applications require knowledge of the ambient wind field, which can be measured by additional devices like anemometers. In general, it would be interesting to avoid such additional apparatuses. One way to achieve this is to estimate the wind vector, that is both the wind direction and speed, from the state variables of the UA. T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - UAV KW - Wind vector KW - Estimation KW - Multirotor aircraft PY - 2018 AN - OPUS4-46479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter T1 - Comparison of the Temperature Behavior of Oil and Gas Damped Piezoresistive Accelerometers N2 - This study presents the characterization of a piezoresistive accelerometer damped with silicon oil for the application in drop tests carried out at BAM. Experiments were performed with the Hopkinson Bar method in close correlation to the real-world application conditions. The results point out certain limitations regarding the temperature influence and the frequency response. Additional experiments were performed with a gas damped type of piezoresistive accelerometer, which has superior specifications, particularly for low temperatures. The results allow for a comparison. T2 - IEEE SENSORS 2018 CY - Neu Delhi, Indien DA - 28.10.2018 KW - Accelerometer KW - Temperature behavior KW - Frequency response KW - Hopkinson Bar KW - Drop test PY - 2018 AN - OPUS4-46484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Neumann, Patrick P. T1 - Two tasks in environmental monitoring - calibration and characterization of gas sensors and remote gas sensing with multicopter platforms - Part 1 N2 - Leaking methane from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, BAM developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the copter downwash on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile multicopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available systems and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - Aarhus University, Department of Environmental Science, External seminar with Matthias Bartholmai and Carlo Tiebe CY - Roskilde, Denmark DA - 29.08.2018 KW - Environmental monitoring KW - Remote gas sensing KW - Flying platforms KW - Mobile robot olfaction KW - UAS PY - 2018 AN - OPUS4-45838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Gawlitza, Kornelia T1 - Two tasks in environmental monitoring - calibration and characterization of gas sensors and remote sensing with multicopter platforms - Part 2 N2 - Emissions of ammonia into the environment are mainly caused by agriculture, but also by combustion processes in waste and by road traffic. Even at low concentrations, this substance is not only an odour nuisance, but also a substance with ecological and climatic relevance. Therefore, BAM tested commercial electrochemical, and metal oxide based sensors, which have limited suitability for measuring in the environmental molar fraction range. Alternatively, own developments for the detection of ammonia in the trace range were implemented, wherein the analyte is measured by changing the fluorescence of a BODIPY dye at 550 nm by means of a portable fluorescence sensor directly from the gas phase. For the calibration of ammonia sensors and measuring instruments, a stationary system based on the mixture of certified test gases from pressure cylinders with calibrated mass flow controllers is available. A test gas generator was developed for on-site calibration and testing of sensors and measuring devices. The generation of ammonia-containing gases in the environmental relevant range of levels below 1000 nmol/mol is carried out by the permeation method according to ISO 6145-10. For the traceability of ammonia, standards are provided and further developed by the National Metrological Institutes and designated institutes. Metrological standards are based on SI units and are a basis for traceability of sensors or gas analysers. T2 - Aarhus University, Department of Environmental Science, External seminar with Matthias Bartholmai and Carlo Tiebe CY - Roskilde, Denmark DA - 29.08.2018 KW - Environmental monitoring KW - Test gas generation KW - Fluorescence sensor KW - Ammonia PY - 2018 AN - OPUS4-45842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Chahardehinejad, Omid A1 - Bartholmai, Matthias ED - Pastrama, S. D. ED - Constantinescu, D. M. T1 - Passive RFID Transponder – Low-Power Multi-Sensor Interface for Structural Health Monitoring in Concrete N2 - Structural Health Monitoring (SHM) has become very important in today's rapidly developing time. High buildings, large bridges and complex technical structures need to be monitored continuously and this over long periods. Visual monitoring cannot evaluate the internal condition of building structures. Thus, material embedded sensors are needed. Cable connection of these sensors pose the disadvantage of weak spots and water intrusion. For concrete embedded sensors the use of batteries is not convenient, because of limited lifetime, difficult charging, and generation of electrical waste.. Hence, monitoring should be implemented preferentially with firmly embedded passive RFID sensor modules. However, since the concrete structure forms an electromagnetically reflective and absorbing barrier, only limited energy can be transmitted to the module. This project requires a highly energy-saving system, which can record different sensor parameters at critical points. T2 - 35th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - RFID KW - Structural Health Monitoring KW - Passive sensor interface KW - Concrete PY - 2018 SN - 978-606-23-0874-2 SP - 141 EP - 142 AN - OPUS4-46097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Hüllmann, Dino T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - Tag der offenen Tür auf dem Testgelände der BAM (BAM TTS) CY - Baruth/Mark - OT Horstwalde, Germany DA - 29.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 AN - OPUS4-46147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of These kind of leaks, we developed a novel robotic platform for aerial remote gas sensing - the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS). T2 - Tag der offenen Tür auf dem Testgelände der BAM (BAM TTS) CY - Baruth/Mark - OT Horstwalde, Germany DA - 29.09.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-46152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, D. Ş ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 SN - 978-606-23-0874-2 SP - 139 EP - 140 PB - PRINTECH CY - Bukarest AN - OPUS4-46137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Hofmann, Michael T1 - VDI/VDE 3518 Technische Richtlinie für Multigassensoren N2 - Der Beitrag präsentiert die erarbeiteten technischen Richtlinien zur Anwendung und Prüfung von Multigassensoren innerhalb der Richtlinienreihe VDI/VDE 3518 sowie in diesem Zusammenhang die Möglichkeiten der Sensorprüfung im akkreditierten Prüflabor des Fachbereichs 8.1 der BAM. Im Speziellen wird das in Kürze veröffentlichte Blatt 3 der Richtlinienreihe vorgestellt, das Bezug auf Multigassensoren für geruchsbezogene Messungen mit elektronischen Nasen nimmt. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Multigassensoren KW - Prüfung KW - Richtlinie PY - 2018 AN - OPUS4-47885 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Wu, Cheng-Chieh A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne remote gas sensing and mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2017 AN - OPUS4-48789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Rurack, Knut T1 - Fluorescence sensor for the long-term monitoring of gaseous ammonia N2 - Ammonia and its reaction products can cause considerable damage of human health and ecosystems, increasing the necessity for reliable and reversible sensors to monitor traces of gaseous ammonia in ambient air directly on-site or in the field. Although various types of gas sensors are available, fluorescence sensors have gained importance due to advantages such as high sensitivity and facile miniaturization. Here, we present the development of a sensor material for the detection of gaseous ammonia in the lower ppm to ppb range by incorporation of a fluorescent dye, which shows reversible fluorescence modulations as a function of analyte concentration, into a polymer matrix to ensure the accumulation of ammonia. A gas standard generator producing standard gas mixtures, which comply with the metrological traceability in the desired environmentally relevant measurement range, was used to calibrate the optical sensor system. To integrate the sensor material into a mobile device, a prototype of a hand-held instrument was developed, enabling straightforward data acquisition over a long period. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Miniaturized sensor device PY - 2017 AN - OPUS4-43143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Müller, Maximilian A1 - Bartholmai, Matthias T1 - Embedded passive RFID-based sensors for moisture monitoring in concrete N2 - Damages in infrastructure due to moisture amount to billions of Euros every year. For a more predictive structural health monitoring in civil engineering, the detection and monitoring of hazardous moisture in steel reinforced concrete constructions is of high interest. The sensors have to be wireless, elsewise they weaken the concrete cover of the rebars. The lifetime of such constructions is normally decades, thus the sensors have to be battery-free and fully passive. Considering these requirements, passive RFID-based sensors are developed. Communication and energy supply are realized wireless via the electromagnetic field of a RFID transmitter. The passive RFIDbased sensors are embedded into the concrete to enable the monitoring of moisture transport in porous materials. Results of the hydration process are shown. T2 - IEEE Sensors 2017 CY - Glasgow, Scotland, UK DA - 30.10.2017 KW - Embedded sensors KW - Wireless sensors KW - Passive sensors KW - RFID-based sensors KW - Structural health monitoring KW - Moisture PY - 2017 SN - 978-1-5386-4056-2 U6 - https://doi.org/10.1109/ICSENS.2017.8234166 SP - 870 EP - 872 PB - IEEE AN - OPUS4-43033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Strangfeld, Christoph T1 - Embedded wireless sensor systems for long-term SHM and corrosion detection in concrete components N2 - State-of-the-art communication standards like RFID and Bluetooth Low Energy enable the development of sensor systems which can be completely embedded into concrete components for long-term SHM and early damage detection. Objective of the project KonSens which is carried out at BAM is the development, implementation, and validation of sensors for measuring of Parameters relevant for corrosion, like moisture, pH value, and electrical conductivity, inside steel reinforced concrete components. The primarily addressed application is detection and evaluation of corrosion processes in concrete bridges. In contrast to cable connected sensors, embedded wireless sensors avoid any pathways for Intrusion of moisture and chemicals, e.g., chlorides which could trigger corrosion activity. To allow for long-term, ideally life-time operation, the once embedded sensor systems must work highly energy efficient. One option are passive RFID sensor systems, which work without battery. The energy is transmitted to the system through the electromagnetic field, even to operate sensors. A crucial parameter is the transmission depth in concrete. First experiments with RFID sensors working at frequencies of 13.56 MHz (HF) and 868 MHz (UHF)embedded in concrete specimen resulted positive for transmission depths of up to 13 cm, which is quite promising, considering that corrosion would appear first at the top level of rebars. A second generation of passive RFID sensor systems has been implemented with improved antenna design. Current experiments using these systems focus on the transmission characteristics in terms of transmission depths and the impact of concrete moisture. Low-energy humidity sensors are used and analysed regarding their capability for measuring the material moisture. Additionally, a relation between transmitted power to the embedded sensor and the moisture content of the concrete specimen caused by energy absorption can be presumed and is under systematic investigation. T2 - Structural Health Monitoring of Intelligent Infrastructure Conference 2017 CY - Brisbane, Australia DA - 05.12.2017 KW - RFID sensors KW - Structural health monitoring KW - Sensors in concrete KW - Smart structures PY - 2017 AN - OPUS4-43491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Strangfeld, Christoph ED - Chan, T. ED - Mahini, S, T1 - Embedded wireless sensor systems for long-term SHM and corrosion detection in concrete components N2 - State-of-the-art communication standards like RFID and Bluetooth Low Energy enable the development of sensor systems which can be completely embedded into concrete components for long-term SHM and early damage detection. Objective of the project KonSens which is carried out at BAM is the development, implementation, and validation of sensors for measuring of Parameters relevant for corrosion, like moisture, pH value, and electrical conductivity, inside steel reinforced concrete components. The primarily addressed application is detection and evaluation of corrosion processes in concrete bridges. In contrast to cable connected sensors, embedded wireless sensors avoid any pathways for intrusion of moisture and chemicals, e.g., chlorides which could trigger corrosion activity. To allow for long-term, ideally life-time operation, the once embedded sensor systems must work highly energy efficient. One option are passive RFID sensor systems, which work without battery. The energy is transmitted to the system through the electromagnetic field, even to operate sensors. A crucial parameter is the transmission depth in concrete. First experiments with RFID sensors working at frequencies of 13.56 MHz (HF) and 868 MHz (UHF) embedded in concrete specimen resulted positive for transmission depths of up to 13 cm, which is quite promising, considering that corrosion would appear first at the top level of rebars. A second generation of passive RFID sensor systems has been implemented with improved antenna design. Current experiments using these systems focus on the Transmission characteristics in terms of transmission depths and the impact of concrete moisture. Low-energy humidity sensors are used and analysed regarding their capability for measuring the material moisture. Additionally, a relation between transmitted power to the embedded sensor and the moisture content of the concrete specimen caused by energy absorption can be presumed and is under systematic investigation. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure 2017 CY - Brisbane, Australia DA - 05.12.2017 KW - RFID sensors KW - Structural health monitoring KW - Sensors in concrete KW - Smart structures PY - 2017 SN - 978-1-925553-05-5 SP - 1 EP - 7 AN - OPUS4-43492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Novel sensor for long-term monitoring of ammonia in gas phase N2 - Because ammonia and its reaction products can cause considerable damage to human health and ecosystems, there is a need for reliably operating and reversibly interacting sensor materials to monitor traces of gaseous ammonia in ambient air, which at best can be used on-site for in-the-field measurements. Herein, the development of a sensor material for gaseous ammonia in the lower ppm to ppb range using optical fluorescence as transduction mechanism is presented. A fluorescent dye, which shows reversible fluorescence enhancement in the presence of ammonia is incorporated into a polymer matrix, the latter to ensure the accumulation of ammonia. The sensor material is integrated into a prototype of a miniaturized sensor device, facilitating long-term operation. To calibrate the optical sensor system a gas standard generator, producing standard gas mixtures, is used, leading to a sensitivity down to lower ppm concentrations of ammonia. T2 - 13. Dresdner Sensor-Symposium 2017 CY - Dresden, Germany DA - 04.12.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Miniaturized sensor device PY - 2017 U6 - https://doi.org/10.5162/13dss2017/P4.02 SP - P4.02, 272 EP - 276 AN - OPUS4-43352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Hübert, Thomas A1 - Gawlitza, Kornelia A1 - Bartholmai, Matthias T1 - Development of a gas standard generator N2 - Pollution through emission of toxic gases is an increasing problem for the environment. It affects similarly agricultural, industrial and urban areas. In future, environmental emissions in ambient air must be monitored at even lower concentrations as nowadays. One environmental relevant compound is ammonia and its conversion product ammonium that have strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the range below 1000 nmol·mol-1 and thus there is a need for reliable traceable ammonia gas standards and in addition in situ analytical procedures for monitoring (in ambient air to avoid that thresholds are exceeded). Therefore, the use of reference materials is necessary for development accompanying test or for calibration, e. g. of structure-integrated sensors and mobile multi-gas sensors. The developed gas standard generator produces gas mixtures that comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range. The method is based on the permeation of ammonia through a membrane at constant temperature and pressure. The resulting ammonia penetrant gas flow is then mixed with a carrier gas flow to generate a gas standard flow of known concentration. The dynamic rage is enlarged by using a two dilution steps. Depending on the permeation rate, generable molar fractions are possible in the range nmol·mol-1 to a few µmol·mol-1. We present the design of an ammonia gas standard generator and first results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. The relative uncertainty of the generated ammonia gas standard is smaller than 4 % (k = 2). T2 - Colloquium of Optical Spectrometry (COSP) CY - Berlin, Germany DA - 27.11.2017 KW - Gas standard generator KW - Permeation method KW - Ammonia PY - 2017 AN - OPUS4-43337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen T1 - Adaptable multi-sensor device for gas detection N2 - Innovation is the catalyst for the technology of the future. It is important to develop new and better technologies that can continuously monitor the environmental impact, e.g., for air quality control or emission detection. In the recently at BAM developed Universal Pump Sensor Control (UPSC3) module, different components and sensors are fused. The combination of the individual components makes the UPSC3 module an excellent monitoring and reference system for the development and characterization of gas specific sensors. Measurements over long periods are possible, for mixed gas loads or for certain gas measurements. The system is part of a mobile sensor network of several sensor units, which can also be used as standalone systems. The motivation and objective of this research is to develop gas sensors based on fluorescence detection with range of ppm / ppb. For this task a reference system is required, which contains volatile organic compound (VOC) sensors for reference data from different scenarios. The integrated multi-sensor unit can measure different gases through the integrated 3-fold VOC sensor, which can be adapted to the addressed scenario. . The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrated memory card. If the previously determined limit range is exceeded, an alarm is generated. The system is an important tool towards further developments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Gas detection KW - Multi sensor device KW - Pump control KW - VOC PY - 2017 AN - OPUS4-43193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Localization of gas sources PY - 2017 AN - OPUS4-43204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartelmeß, Jürgen A1 - Gawlitza, Kornelia A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Kohlhoff, Harald A1 - Kraus, Werner A1 - Mansurova, Maria A1 - Bell, Jérémy T1 - Developments towards the fluorescence based sensing of hazardous gases N2 - Fluorescence based sensing is a versatile approach for the trace analysis outside of the laboratory, requiring suitable sensor materials and their integration into sensing devices. The versatility of fluorophores as probes, especially in terms of the possibility to tailor their optical as well as their recognition properties by synthetic modifications in a wide range, renders them a superior active component for the preparation of optical sensor devices. Recent works at BAM in this field include, for example, the detection of nerve gas agents, illustrating impressively the aforementioned benefits of fluorophores in optical sensing applications. In the interdisciplinary approach presented here, we target hazardous gases such as ammonia, benzene, and hydrogen sulfide, next to others, which pose a major threat to human health and environmental safety and for which the availability of a sensitive and reliable detection method is highly desirable. The dyes presented follow a “turn-on” fluorescence schematic which allows for the selective and sensitive detection of the respective gaseous analyte. The immobilization of the probe in polymeric matrices is then the next step toward the fabrication of a prototype device for molecular sensing. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Gas sensing KW - Fluorescence KW - KonSens PY - 2017 AN - OPUS4-43209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen T1 - KonSens - Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung N2 - In the KonSens Project, sensor systems are developed, validated, and operated in form of functional models for the application areas Structure Integrated Sensors and Mobile Multi-gas Sensors. Key aspects are the detection and evaluation of corrosion processes in reinforced concrete structures as well as the detection and quantification of very low concentrations of toxic gases in air. The adaption of sensor principles from the lab into real-life application including appropriate communication techniques is a major task. In recent years, Structural Health Monitoring have gained in importance, since growing age of buildings and infrastructure as well as increasing load requirements demand for reliable surveillance methods. In this regard, the project follows two strategies: First, the development and implementation of completely embedded sensor systems consisting of RFID-tag and in situ sensors, and their further application potential (e.g. for precast concrete elements, roadways, wind power plants, and maritime structures). Secondly, the development of a long-term stable, miniaturized, fiber optic sensor for a ratiometric and referenced measurement of the pH-value in concrete based on fluorescence detection as an indicator for carbonation and corrosion. Environmental pollution through emission of toxic gases becomes an increasing problem not only in agriculture (e.g. biogas plants) and industry but also in urban areas. This leads to increasing demand to monitor environmental emissions as well as ambient air and industrial air components in many scenarios and in even lower concentrations than nowadays. The selectivity of luminescence-based sensors is enabled by the combination of the sensing dye and the material, which is used as accumulation medium for concentration of the analyte. This principle allows for developing gas sensors with high selectivity and sensitivity of defined substances. Additional benefits, particularly of fluorescence-based sensors, are their capability for miniaturization and potential multiplex mode. Objective is the development and implementation of sensors based on fluorescence detection for defined toxic gases (ammonia, hydrogen sulfide, ozone, and benzene) with sensitivity in the low ppm or even ppb range. Additionally, the integration of such sensors in mobile sensor devices is addressed. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - RFID sensors KW - Sensors in concrete KW - Gas sensors KW - Mobile sensors KW - Fluorescence sensors PY - 2017 AN - OPUS4-43183 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lazik, D. A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Ebert, Sebastian T1 - Characteristic length measurement of a subsurface gas anomaly - an integrating monitoring approach over heterogeneous distributed gas flow paths N2 - Geogenic gases such as CH4 or CO2 from natural sources, gases (CCS-CO2, H2, Natural gas, City gas …) from a geological repository, or a leaking gas pipeline can present serious risks in industrial and urban areas where the density of infrastructural elements increases as well as above and below ground. To extend the lead time for risk treatment in such critical regions, reliable detection of gases within the shallow subsurface is required to observe critical gas accumulations before degassing into the atmosphere. A near real-time monitoring approach is introduced to determine the volumetric expansion of such a gas escaping from a leak in the subsurface. Considering the pressure relaxation with the ambient air pressure, the approach enables the forecasting of the final size of a pressurized gas body in terms of characteristic lengths. According to theoretical basics, such a characteristic length, which allows to perform a gas (safety) measurement based on a purely geometrical measure, behaves independently of subsurface properties, i.e., it enables a reliable quantification of the escaping gas, irrespective of its heterogeneous flow path distribution. A field test for a 10 l/min pinhole leakage of CO2 injected in an unsaturated Chernozemic soil (agricultural test field Bad Lauchstädt)that was equipped with linear gas sensors demonstrates the lateral-vertical volumetric gas expansion along the environment of these gas sensors, and confirms the applicability of the new characteristic length approach. T2 - UFZ EnergyDays 2017 CY - Leipzig, Germany DA - 15.03.2017 KW - CO2 KW - Carbon capture and storage KW - Leakage KW - Monitoring PY - 2017 AN - OPUS4-39400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Mieller, Björn T1 - RFID sensor systems embedded in concrete – validation experiments for long-term monitoring N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - RFID sensors KW - Long-term requirements KW - Structural health monitoring KW - Passive RFID KW - Sensor requirements KW - Sensors in concrete KW - Smart structures PY - 2017 AN - OPUS4-40348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Mieller, Björn A1 - Bartholmai, Matthias T1 - RFID sensor systems embedded in concrete – validation experiments for long-term monitoring N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Smart structures KW - RFID sensors KW - Long-term requirements KW - Structural health monitoring KW - Passive RFID KW - Sensor requirements KW - Sensors in concrete PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-403496 UR - https://www.ndt.net/?id=21499 SN - 1435-4934 VL - 22 IS - 9 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-40349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph A1 - Van Bocxlaer, A. T1 - RFID-Sensor-Transponder in Beton N2 - Sensor-Transponder-Lösung der BAM ermöglicht automatisiertes Brückenmonitoring und Predictive Maintenance und detektiert Korrosion in Beton. KW - RFID-Sensorsysteme KW - Bauteilintegrierte Sensoren KW - Betonkorrosion KW - Structural health monitoring PY - 2017 SN - 1860-5907 VL - 2017 IS - 5 SP - 46 EP - 49 PB - Verlag & Freie Medien, Lüneburg CY - Lüneburg AN - OPUS4-40873 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Mieller, Björn A1 - Bartholmai, Matthias ED - Emri, I. T1 - RFID sensor systems embedded in concrete – requirements for long–term operation N2 - Structural Health Monitoring (SHM) is an important topic for Industry 4.0. More and more systems are embedded in different materials and are connected to each other. To embed sensors for a long time in concrete, an exact preparation is required. In this paper, we identify Radio-Frequency Identification (RFID) as promising technology for monitoring of concrete structures. This paper present the concept for long term monitoring, defines the requirements and shows first development steps, for example, the system design, the possibilities of sensor connection, and an encapsulation for embedding in concrete. T2 - 33nd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Portoroz, Slovenia DA - 20.09.2016 KW - RFID sensors KW - Long-term requirements KW - Structural health monitoring KW - Passive RFID KW - Sensor requirements KW - Sensors in concrete KW - Smart structures PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S2214785317308283 U6 - https://doi.org/10.1016/j.matpr.2017.06.053 SN - 2214-7853 VL - 4 IS - 5, Part 1 SP - 5827 EP - 5832 PB - Elsevier Ltd. AN - OPUS4-41581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schukar, Vivien A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Mitzkus, Anja A1 - Gong, Xin A1 - Sahre, Mario A1 - Bartholmai, Matthias A1 - Beck, Uwe ED - Emri, Igor T1 - A contribution to intelligent automatic validation of structure-integrated fibre optic strain sensors N2 - An auto-validation tool for the reliability quantification of materials integrated fiber Bragg grating (FBG) strain sensors have been developed and tested. The FBG strain sensor was jacketed with a magnetostrictive layer based on iron-nickel which, when excited by a specific magnetic field, adds an artificial strain to the sensor. The fixed relationship between magnetic induction and wavelength shift of the FBG strain sensor characterizes the bond strength and adhesion between the sensor and the surrounding structure. Due to an easily applicable magnetic field, it is possible to validate the sensor performance in a non-contact, fast way without disturbing the data-acquisition process. T2 - 33nd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Fiber Bragg grating KW - Self-diagnosis KW - Magnetostriction KW - Strain KW - Auto-validation PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S2214785317308489 U6 - https://doi.org/10.1016/j.matpr.2017.06.073 SN - 2214-7853 VL - 4 IS - 5, Part 1 SP - 5935 EP - 5939 PB - Elsevier Ltd. AN - OPUS4-41583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Emri, Igor T1 - Validation of membrane-based linear soil gas sensors under field conditions N2 - A 400 m2 soil test field with gas injection system was built up, which enables an experimental validation of linear membrane-based gas sensors – a sensor technology which was developed based on the selective permeation of gases through membranes. Several soil watering and injection experiments with carbon dioxide at different days with varying boundary conditions were performed showing that the sensor behaves mostly insensitive to the environmental conditions investigated, i.e., barometric pressure fluctuations, soil temperature, air temperature and humidity, sun duration, and wind speed. Furthermore, depending on water infiltration, a gas phase displacement could be observed in-situ based on the changed measurement signal. The results of the validation experiments highlight the potential of the method for rapid leak detection and localization qualifying the sensor particularly for safety applications, e.g., in underground gas storage areas. T2 - 33nd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Distributed linear sensor KW - Membrane-based gas sensing KW - Subsurface monitoring KW - Gas storage areas KW - Validation PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S2214785317308404 U6 - https://doi.org/10.1016/j.matpr.2017.06.065 SN - 2214-7853 VL - 4 IS - 5, Part 1 SP - 5893 EP - 5897 PB - Elsevier Ltd. AN - OPUS4-41584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Bartholmai, Matthias ED - Cosmi, Francesca T1 - RFID sensor system embedded in concrete –validation of UHF antenna geometries in different concrete depths N2 - This paper is a further research on the topic of the complete embedding of radio frequency identification (RFID) sensors in concrete. The focus is on the antenna of the transponder. Earlier investigations of different RFID technologies, embedded in concrete, showed a difference in energy transmission. The transmission through concrete at ultra high frequency (UHF), in spite of the large signal range, does not match the targeted application specific task. Therefore, the antenna characteristics have been examined more closely. The antenna is an important component for the application of RFID. Through the antenna, energy and data transfer takes place, so it is important to design an optimal antenna to accomplish a maximum embedding depths in concrete. To identify the optimal antenna geometry, different UHF antenna types were selected and investigated. An experimental comparison was performed to gain more information about the damping behavior and antenna characteristics in concrete. T2 - 34th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - RFID sensors KW - Structural health monitoring KW - Passive RFID KW - UHF antenna KW - Sensors in concrete KW - Smart structures PY - 2017 SN - 978-88-8303-863-1 SP - 114 EP - 115 CY - Trieste AN - OPUS4-42093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Daum, Werner T1 - Characterization of the temperature behavior of a piezoresistive accelerometer N2 - Piezoresistive accelerometers use a strainsensing element, generally made of semiconductor material, e.g., silicon to convert the mechanical motion into an electrical signal. This element is usually designed in form of a cantilever beam loaded with a mass. Acceleration causes bending of the beam, which produces a change of electrical resistance proportional to the applied acceleration. Main advantages of piezoresistive accelerometers in comparison to other types, e.g., piezoelectric and capacitive, is their robust and highly dynamic behavior, which qualifies them for application in high impact shock applications. Mechanical damping is typically implemented with silicon oil in a way that the output signal is undistorted over a wide frequency range. These characteristics principally qualify them for the application in drop tests carried out at BAM, for which they are calibrated over the frequency range from 1 to 4 kHz. However, using silicon oil for damping, has the drawback of temperature dependent change of its viscosity, leading to temperature dependent deviation of the accelerometer’s sensitivity. This study presents experimental results of the temperature behavior of a piezoresistive accelerometer with a dynamic range up to ±5000 g. This type of accelerometer is applied for drop tests which are partially performed at temperatures of -40 or +100 °C. T2 - 34th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - Piezoresistive accelerometers KW - Temperature behavior of a piezoresistive accelerometer KW - Hopkinson bar KW - Drop tests PY - 2017 AN - OPUS4-42095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Noske, Reinhard A1 - Feller, Viktor A1 - Bartholmai, Matthias ED - Vonau, Winfried ED - Cruvinel, P. ED - Chilibon, I. ED - Carvalho, V. ED - Sophocleous, M. T1 - Gas detection using a multi-sensor device with pump control and VOC sensor N2 - This paper deals with the development and investi-gation of a volatile organic compound (VOC) system for differ-ent scenarios. The integrated multi-sensor unit can detect dif-ferent gases through the integrated 3-fold VOC sensor, where-by a continuous measurement takes place. The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrat-ed Secure Digital (SD) card. If the previously determined limit range is exceeded, an alarm is generated. Due to the combina-tion of different components, numerous applications are possi-ble. The system is the first step or a tool towards further devel-opments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors, and it is still largely extended by application-specific influences. T2 - Sensordevices 2017 - The Eighth International Conference on Sensor Device Technologies and Applications CY - Rome, Italy DA - 2017-09-10 KW - Gas detection KW - VOC KW - Pump control KW - Multi sensor device PY - 2017 SN - 978-1-61208-581-4 SP - 1 EP - 4 CY - Rome, Italy AN - OPUS4-42097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Johann, Sergej A1 - Daum, Werner ED - Cosmi, F. T1 - Characterization of the temperature behavior of a piezoresistive accelerometer N2 - Piezoresistive accelerometers use a strain-sensing element, generally made of semiconductor material, e.g., silicon to convert the mechanical motion into an electrical signal. This element is usually designed in form of a cantilever beam loaded with a mass. Acceleration causes bending of the beam, which produces a change of electrical resistance proportional to the applied acceleration. Main advantages of piezoresistive accelerometers in comparison to other types, e.g., piezoelectric and capacitive, is their robust and highly dynamic behavior, which qualifies them for application in high impact shock applications. Mechanical damping is typically implemented with silicon oil in a way that the output signal is undistorted over a wide frequency range. These characteristics principally qualify them for the application in drop tests carried out at BAM, for which they are calibrated over the frequency range from 1 to 4 kHz. However, using silicon oil for damping, has the drawback of temperature dependent change of its viscosity, leading to temperature dependent deviation of the accelerometer’s sensitivity. This study presents experimental results of the temperature behavior of a piezoresistive accelerometer with a dynamic range up to ±5000 g. This type of accelerometer is applied for drop tests which are partially performed at temperatures of -40 or +100 °C. T2 - 34th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - Accelerometer KW - Temperature behavior KW - Drop test PY - 2017 UR - https://www.openstarts.units.it/handle/10077/14921 SN - 978-88-8303-863-1 SP - 93 EP - 95 CY - Trieste AN - OPUS4-42109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Mieller, Björn A1 - Bartholmai, Matthias T1 - RFID sensor systems embedded in concrete – Validation experiments for long-term monitoring T1 - RFID Sensorsysteme eingebettet in Beton – Validierungsexperimente zum Langzeitmonitoring N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7% - The epoxy resin has increased by 1.8% due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. KW - RFID sensors KW - Structural health monitoring KW - Sensors in concrete KW - Smart structures KW - Sensor requirements PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-418331 UR - http://www.ndt.net/?id=21499 SN - 1435-4934 VL - 22 IS - 9 SP - Artikel 8, 1 EP - 7 PB - NDT.net CY - Bad Breisig AN - OPUS4-41833 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Kammermeier, Michael A1 - Müller, Maximilian A1 - Strangfeld, Christoph T1 - RFID sensor systems embedded in concrete – systematical investigation of the transmission characteristics N2 - Long-term completely embedded sensor systems offer innovative possibilities for structural health monitoring of concrete structures. Measuring of relevant parameters, e.g., temperature, humidity, or indication of corrosion can be performed with low energy sensors. This allows to implement passive RFID sensor systems without cable connection and battery, which are power supplied exclusively by the electromagnetic field from the external reader device. To evaluate characteristics and conditions of this concept, a systematical investigation of the transmission characteristics with variation of relevant parameters, as communication frequency, installation depth, type of concrete, moisture content, etc. is currently carried out in an interdisciplinary research project at BAM. First results are presented in this paper. T2 - 8th European Workshop On Structural Health Monitoring CY - Bilbao, Spain DA - 05.07.2016 KW - Structural health monitoring KW - Embedded sensor KW - Energy harvesting KW - Wireless sensors KW - RFID sensors KW - Transmission characteristics PY - 2016 SP - 1 EP - 5 AN - OPUS4-37129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Kammermeier, Michael A1 - Müller, Maximilian T1 - RFID sensor systems embedded in concrete – systematical investigation of the transmission characteristics N2 - Long-term completely embedded sensor systems offer innovative possibilities for structural health Monitoring of concrete structures. Measuring of relevant parameters, e.g., temperature, humidity, or indication of corrosion can be performed with low energy sensors. This allows to implement passive RFID sensor systems without cable connection and battery, which are power supplied exclusively by the electromagnetic field from the external Reader device. To evaluate characteristics and conditions of this concept, a systematical Investigation of the transmission characteristics with variation of relevant parameters, as communication frequency, installation depth, type of concrete, moisture content, etc. is currently carried out in an interdisciplinary research project at BAM. First results are presented in this paper. T2 - 8th European Workshop On Structural Health Monitoring CY - Bilbao, Spain DA - 05.07.2016 KW - Embedded sensor KW - Energy harvesting KW - Wireless sensors KW - RFID sensors KW - Transmission characteristics KW - Structural health monitoring PY - 2016 AN - OPUS4-37130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Daum, Werner A1 - Gong, Xing A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Schukar, Vivien A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe T1 - New self - diagnostic fiber optical sensor technique for structural health monitoring N2 - Fiber optic sensors have gained increasing importance in recent years and are well established in many areas of industrial applications. In this paper, we introduce a concept of a self-diagnostic fiber optic sensor. The presented sensor is to resolve the problems of embedded fiber optic sensors in complex structures and to enable the validation under operational conditions. For this purpose, different magnetostrictive coated fiber optic sensors were developed and various experiments were performed to verify their mode of Operation and to determine the respective reproducibility. The measuring principle is illustrated by obtained experimental results, which showed a change in wavelength from 1 pm at a magnetic field strength change of 0.25 mT. In addition, the temperature characteristics of the implemented magnetostrictive sensor were analyzed and an experimental factor of 1.5 compared to a reference fiber optic sensor was determined. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Self-diagnostic fiber optical sensor KW - Magnetostrictive metal coating KW - Magnetic field KW - Fiber bragg grating PY - 2016 U6 - https://doi.org/10.1016/j.matpr.2016.03.038 SN - 2214-7853 VL - 3 IS - 4 SP - 1009 EP - 1013 AN - OPUS4-37131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Tomographic reconstruction of soil gas distribution from multiple gas sources based on sparse sampling N2 - A monitoring method is introduced that creates twodimensional (2D) maps of the soil gas distribution. The method combines linear gas sensing technology for in-situ monitoring of gases in soil with the mapping capabilities of Computed Tomography (CT) to reconstruct spatial and temporal resolved gas distribution maps. A weighted iterative algebraic reconstruction method based on Maximum Likelihood with Expectation Maximization (MLEM) in combination with a source-by-source reconstruction approach is introduced that works with a sparse setup of orthogonally-aligned linear gas sensors. The reconstruction method successfully reduces artifact production, especially when multiple gas sources are present, allowing the discrimination between true and non-existing so-called ghost source locations. Experimental validation by controlled field experiments indicates the high potential of the proposed method for rapid gas leak localization and quantification with respect to Pipeline or underground gas storage issues. KW - Computed tomography KW - Gas distribution mapping and gas source localization KW - Discrimination of multiple gas sources KW - Distributed linear sensor KW - Membrane-based gas sensing KW - Subsurface monitoring KW - Gas storage areas PY - 2016 U6 - https://doi.org/10.1109/JSEN.2016.2545103 SN - 1530-437X VL - 16 IS - 11 SP - 4501 EP - 4508 PB - IEEE - Inst. Electrical Electronics Engineers Inc CY - Hoes Lane, NJ, USA AN - OPUS4-36228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Müller, Maximilian A1 - Bartholmai, Matthias T1 - Moisture Measurements with RFID based Sensors in Screed and Concrete N2 - To quantify the moisture in concrete, RFID based humidity sensors are embedded. Passive high frequency, ultra-high frequency RFID tags as well as active Bluetooth sensors are tested. After concreting, all sensors measure the corresponding relative humidity to monitor the concrete moisture. Two case studies are performed, embedding in an existing construction, i.e. the duraBASt test bridge, and embedding in cement based mortar in the laboratory. As basis for robust and long-life sensors in alkaline concrete, different casing materials are tested. Furthermore, signal strength measurements and their sensitivity to different moisture levels are performed. T2 - 8th European Workshop On Structural Health Monitoring CY - Bilbao, Spain DA - 05.07.2016 KW - Humidity sensors KW - Moisture measurements KW - RFID based sensors KW - DuraBASt PY - 2016 SP - 1 EP - 10 AN - OPUS4-36817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Bartholmai, Matthias ED - Aulova, Alexandra ED - Rogelj Ritonja, Alenka ED - Emri, Igor T1 - RFID sensor systems embedded in concrete - requirements for long-term operation N2 - One of the more difficult tasks for structural health monitoring is the continuous evaluation of the stability and load capacity of the building materials. This knowledge can be won, e.g., by taking material samples at the examining place with the drawback of partly destroying the structure. To avoid this, modern sensor and communication technologies offer promising methods for non-destructive testing. To address the tasks for monitoring of concrete structures, in the presented study, different sensors were combined with RFID transponders and embedded in concrete components. T2 - 33rd Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Structure health monitoring KW - Concrete KW - Embedded KW - RFID sensors PY - 2016 SN - 978-961-94081-0-0 SP - 68 EP - 69 CY - Ljubljana AN - OPUS4-37535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - From insects to micro air vehicles - a comparison of reactive plume tracking strategies N2 - Insect behavior is a common source of inspiration for roboticists and computer scientists when designing gas-sensitive mobile robots. More specifically, tracking airborne odor plumes, and localization of distant gas sources are abilities that suit practical applications such as leak localization and emission monitoring. Gas sensing with mobile robots has been mostly addressed with ground-based platforms and under simplified conditions and thus, there exist a significant gap between the outstanding insect abilities and state-of-the-art robotics systems. As a step toward practical applications, we evaluated the performance of three biologically inspired plume tracking algorithms. The evaluation is carried out not only with computer simulations, but also with real-world experiments in which, a quadrocopter-based micro Unmanned Aerial Vehicle autonomously follows a methane trail toward the emitting source. Compared to ground robots, micro UAVs bring several advantages such as their superior steering capabilities and fewer mobility restrictions in complex terrains. The experimental evaluation shows that, under certain environmental conditions, insect like behavior in gas-sensitive UAVs is feasible in real-world environments. T2 - IAS13 - 13th International conference on intelligent autonomous systems CY - Padova, Italy DA - 2014-07-15 KW - Autonomous micro UAV KW - Mobile robot olfaction KW - Gas source localization KW - Reactive plume tracking KW - Biologically inspired robots PY - 2016 SN - 978-3-319-08338-4; 978-3-319-08337-7 U6 - https://doi.org/10.1007/978-3-319-08338-4_110 SN - 2194-5357 SP - 1533 EP - 1548 PB - Springer Verlag CY - Berlin, Germany AN - OPUS4-31526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Leak detection with linear soil gas sensors under field conditions - First experiences running a new measurement technique N2 - A 400 m² soil test field with gas injection system was built up, which enables an experimental validation of linear gas sensors for specific applications and gases in an application-relevant scale. Several injection and soil watering experiments with carbon dioxide (CO2) at different days with varying boundary conditions were performed indicating the potential of the method for, e.g., rapid leakage detection with respect to Carbon Capture and Storage (CCS) issues. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Soil test field KW - Membrane-based linear gas sensor KW - Leak detection KW - Field conditions PY - 2016 SN - 978-1-4799-8287-5 SN - 1930-0395 SP - B-3-65, 757 EP - 759 PB - IEEE AN - OPUS4-38244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Lazik, D. T1 - Leak detection with linear soil gas sensors under field conditions - First experiences running a new measurement technique N2 - A 400 m² soil test field with gas injection system was built up, which enables an experimental validation of linear gas sensors for specific applications and gases in an application-relevant scale. Several injection and soil watering experiments with carbon dioxide (CO2) at different days with varying boundary conditions were performed indicating the potential of the method for, e.g., rapid leakage detection with respect to Carbon Capture and Storage (CCS) issues. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Soil test field KW - Membrane-based linear gas sensor KW - Leak detection KW - Field conditions PY - 2016 AN - OPUS4-38247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schukar, Vivien A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Westphal, Anja A1 - Sahre, Mario A1 - Gong, Xin A1 - Bartholmai, Matthias A1 - Beck, Uwe T1 - Magnetic field detection with an advanced FBG-based sensor device N2 - A high-performance fiber Bragg grating-based (FBG) sensor device has been developed for the detection of small magnetic fields. Based on a smart multilayer jacket around the fibre over the physical length of the FBG, magnetic fields generated by rotating machine parts, power generators or power cable can be easily detected, analysed and evaluated. Consequently, this innovative, on-line and non-contact inspection method results in an increase in quality and reliability of high-performing machine parts, devices and cables. The basic physical principle is based on a magnetostrictive multilayer system that strains the high-resolution FBG element in presence of magnetic fields. Subsequently, a fixed relationship between induced magnetic field and wavelength change of the FBG element describes the characteristic sensitivity curve. Intensive tests regarding characterisation of this magnetic field FBG sensor have been carried out and its performance has been evaluated. T2 - 30th Eurosensors Conference, EUROSENSORS 2016 CY - Budapest, Hungary DA - 04.09.2016 KW - Fiber Bragg grating KW - Magnetostriction KW - Strain KW - Magnetic field PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-376703 SN - 1877-7058 VL - 168 SP - 1270 EP - 1274 PB - Elsevier Ltd. AN - OPUS4-37670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -