TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Zimmek, David A1 - Bartholmai, Matthias ED - Helmerich, Rosemarie ED - Ilki, A. ED - Motavalli, M. T1 - Smart electronic helper for long-term monitoring of bridges and building structures T2 - Proceedings of the 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) N2 - Increasing traffic volume on the one hand and ageing infrastructure on the other hand have created many new challenges for maintenance and structural health monitoring of roads and bridges. In the past, many bridges and road structures have been neglected, often resulting in traffic congestion, road closure, and increased repair costs. This research is concerned with the development of a system to improve the challenge of maintenance and early detection of damage, particularly moisture penetration and corrosion of steel reinforced concrete components. The objective is to develop a method that will also work after 30 years and longer. Many new IoT solutions are equipped with internal energy storage elements (accumulators or batteries) which are inappropriate here, since most relevant signs of concrete degradation occur after decades, where the functioning of such elements are more than questionable. The presented technology approach uses radio-frequency identification (RFID) and enables connectivity to sensors. It offers the advantage of an passive, completely independent energy supply without any energy storage components. Since the system should be permanently embedded in concrete, it is crucial to develop a long-term stable device which is adapted to the environmental influences of the structure, e.g., long-term resistance in very alkaline environment of pH 13. In numerous experiments, the robustness of the system was tested and evaluated. Various tests with encapsulations to protect the electronics were performed, and for long-term validation different concrete specimens were instrumented with RFID-sensor-systems. Their operating time is now around two years and investigations for signs of fatigue and damage to the encapsulation and the electronics are ongoing. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Long term monitoring KW - Passive RFID KW - SHM KW - Sensors KW - Smart structures PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489890 SP - 1 EP - 6 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Bartholmai, Matthias ED - Cosmi, Francesca T1 - RFID sensor system embedded in concrete –validation of UHF antenna geometries in different concrete depths T2 - 34rd Danubia - Adria Symposium on Advances in Experimental Mechanics - Book of proceedings N2 - This paper is a further research on the topic of the complete embedding of radio frequency identification (RFID) sensors in concrete. The focus is on the antenna of the transponder. Earlier investigations of different RFID technologies, embedded in concrete, showed a difference in energy transmission. The transmission through concrete at ultra high frequency (UHF), in spite of the large signal range, does not match the targeted application specific task. Therefore, the antenna characteristics have been examined more closely. The antenna is an important component for the application of RFID. Through the antenna, energy and data transfer takes place, so it is important to design an optimal antenna to accomplish a maximum embedding depths in concrete. To identify the optimal antenna geometry, different UHF antenna types were selected and investigated. An experimental comparison was performed to gain more information about the damping behavior and antenna characteristics in concrete. T2 - 34th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - RFID sensors KW - Structural health monitoring KW - Passive RFID KW - UHF antenna KW - Sensors in concrete KW - Smart structures PY - 2017 SN - 978-88-8303-863-1 SP - 114 EP - 115 CY - Trieste AN - OPUS4-42093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -