TY - JOUR A1 - Barthel, Maria A1 - Vogler, Nico A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Outdoor performance tests of self-cooling concrete paving stones for the mitigation of urban heat island effect N2 - Rising temperatures worldwide pose an increasing challenge for safe and healthy living conditions. Particularly inner cities have been affected by these environmental changes because of the materials used to build houses, streets and infrastructure. The most common building material is concrete. It shows a specific heat capacity, while the heat conductivity for Standard concrete is low. Thus, the use of concrete generates a high capacity of heat storage. In addition, extensive soil sealing also contributes to the temperature rise of inner city areas compared to their surroundings. To mitigate this so-called urban heat island effect, a self-cooling concrete paver was developed. This paver is able to store water. The evaporation of the water at elevated temperatures provides a cooling effect. This paper focuses on determination of this new paver’s capability to cool the surface and the surrounding. The new paver’s cooling Qualities were analysed in a series of laboratory tests. To prove the results outside of laboratory conditions, two fields (12 m × 8 m) with self-cooling and reference pavers were installed in Spain. This paper presents and discusses the results of the tests. Correlation between reduced surface temperature of the self-cooling concrete pavers and the air temperature is examined. KW - Urban heat island KW - Concrete paving stone KW - Self-cooling KW - Performance tests KW - Hitzeinsel KW - Betonpflasterstein KW - Selbstkühlend KW - Nachweis der Wirksamkeit PY - 2017 U6 - https://doi.org/10.1080/14680629.2016.1163282 SN - 1468-0629 SN - 2164-7402 VL - 18 IS - 2 SP - 453 EP - 463 AN - OPUS4-35741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Mitigation of the urban heat island effect by self-cooling concrete pavers N2 - Worldwide an increasing migration from rural to urban regions can be observed. Hence cities are growing and as a result the building density and the land sealing rise. Concrete as commonly used building material in urban structures provides a high heat storage capacity. Therefore the microclimate in cities has become warmer than in the surrounding areas. This phenomenon is called Urban Heat Island Effect. To mitigate this situation a large scale application of self-cooling concrete pavers is an approach to reduce the urban heat island effect. Making use of evaporation enthalpy, this new type of pavements counterbalances the absorption of solar radiation and the subsequent transfer of heat to the surrounding environment. The typical double-layer structure of concrete paving stones can be maintained. The mass concrete acts as a water storage layer and is covered by a permeable face concrete. As the different requirements of these layers demand different concrete mixtures, they are developed and optimised for their respective functions. This paper presents some suitable no-slump concrete mixtures that combine a sufficient compressive strength as well as good water transportation properties for the above mentioned approach. KW - Pavement KW - Urban heat island KW - No slump concrete KW - Fibers PY - 2013 SN - 2225-0514 SN - 2224-5790 VL - 4 SP - 35 EP - 39 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-29931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barthel, Maria A1 - Rübner, Katrin A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas A1 - Dehn, F. T1 - From waste materials to products for use in the cement industry N2 - Industrial wastes (bottom ash, crushed concrete fines, filter residue, paper ash and lignite fly ash) have potential for use in building materials, for instance as raw materials for clinker production, as supplementary cementitious materials (SCMs) or mineral additions in concrete. The properties of the products are dependent on the reactivity of the waste materials used, which can be classified as inert, latent hydraulic or pozzolanic. In this study, waste materials were first characterised. This was followed by theoretical considerations of the mentioned application options. Experiments were limited to evaluation of potential as SCMs and, for this purpose, activity index measurements and calorimetric and thermogravimetric analyses were performed. Finally, the synergetic effects of various waste materials were considered. Paper ash (calcium oxide source) and filter residue (amorphous silicon dioxide source) showed the best prospects for use as cementitious material components. KW - thermal methods KW - blended cements KW - recycled material KW - analysis PY - 2016 U6 - https://doi.org/10.1680/jadcr.15.00149 SN - 0951-7197 SP - 1 EP - 11 PB - ICE publishing CY - London, UK AN - OPUS4-36277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -