TY - JOUR A1 - Barthel, Maria A1 - Rübner, Katrin A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas A1 - Dehn, F. T1 - From waste materials to products for use in the cement industry N2 - Industrial wastes (bottom ash, crushed concrete fines, filter residue, paper ash and lignite fly ash) have potential for use in building materials, for instance as raw materials for clinker production, as supplementary cementitious materials (SCMs) or mineral additions in concrete. The properties of the products are dependent on the reactivity of the waste materials used, which can be classified as inert, latent hydraulic or pozzolanic. In this study, waste materials were first characterised. This was followed by theoretical considerations of the mentioned application options. Experiments were limited to evaluation of potential as SCMs and, for this purpose, activity index measurements and calorimetric and thermogravimetric analyses were performed. Finally, the synergetic effects of various waste materials were considered. Paper ash (calcium oxide source) and filter residue (amorphous silicon dioxide source) showed the best prospects for use as cementitious material components. KW - thermal methods KW - blended cements KW - recycled material KW - analysis PY - 2016 U6 - https://doi.org/10.1680/jadcr.15.00149 SN - 0951-7197 SP - 1 EP - 11 PB - ICE publishing CY - London, UK AN - OPUS4-36277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Rübner, Katrin ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Interactions between waste paper sludge ashes and superplasticizers based on polycarboxylates N2 - In many industrial nations, about two third of the paper demand is covered by recovered paper. A major process step within the treatment of waste paper is the de-inking. It is a floating process yielding paper sludge as a waste product. About 50 % of this residue is used as a fuel. In several cases it is burnt at temperature of about 850 °C and thereafter the accrued ashes are collected in the flue gas filter. During the combustion, kaolinite and calcium oxide generate gehlenite and larnite. Calcite is the main component of waste paper sludge ash (PA).The chemical and mineralogical composition of PA suggests using it as a supplementary cementitious material. In modern construction materials technology, workability aspects gain importance, since for most modern materials the rheology and compaction ability are relevant for the operation at a hardened state. It was observed that PA significantly increases the water demand of powder systems, which can cause serious problems during the casting of mineral binder systems containing PA. It is therefore obvious that binder systems containing PA might demand for the use of superplasticizers. Superplasticizers are polymers with anionic backbone that cause electrostatic and steric repulsion effects upon adsorption on surfaces of particles and hydration phases. In this paper interactions between superplasticizers and waste paper sludge ashes are discussed and analysed. Based on observations of changes in the zeta potential and the dispersion of the particle system, the influence of the charge density of superplasticizers is observed and time dependent effects are demonstrated. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Waste paper sludge KW - Rheology KW - Cement KW - Concrete KW - Polycarboxylate ether PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 181 EP - 186 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogler, Nico A1 - Barthel, Maria A1 - Kühne, Hans-Carsten T1 - Self-cooling concrete pavers – performance tests by long-term studies under various climatic conditions N2 - In the last several decades, the rural exodus has led to an increasing number of inhabitants in the urban areas. The increased building and infrastructural construction caused the transformation of the landscape and to an increased land sealing in these areas. Consequently, the increased land sealing influences the air temperatures in the cities, since houses, streets and squares heat up continuously. As a result, the city and metropolitan areas became significantly warmer than their surroundings - the effect is known as Urban Heat Island (UHI). These changes have a negative impact for the quality of life. To deal with the negative effects of UHI, a high level of technical and financial effort is necessary. The costs caused by the UHI effects are in the range of several billion US dollars worldwide per year. The recent studies on UHI showed that the established methods like parks and green spaces or bright coatings for roof areas will soon not be able to effectively cope with the UHI effect in urban areas. Therefore there is a need for additional methods to mitigate UHI effect in the cities. The streets, sidewalks and squares represent approximately 30% to 40% of the inner cities areas. If these areas are designed functionally, they can have a significant impact on the UHI. This contribution focuses on development of a concrete paving stone with self-cooling properties. For the cooling effect the evaporative cooling is used. The paving stone is able to store large quantities of water and deliver during appropriate environmental conditions. This paper deals with the results of the long-term experiments on the test-fields under different climatic conditions. To interpret the test-field-results, laboratory tests were carried out as well. The paper presents and discuss the obtained results, and points out the difficulties occurred. T2 - 2nd International conference on advances in cement and concrete technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Urban heat island KW - Concrete paving stone KW - Self-cooling KW - Performance tests KW - Long-term studies KW - Hitzeinsel KW - Betonpflasterstein KW - Selbstkühlend KW - Nachweis der Wirksamkeit KW - Langzeitversuch PY - 2016 SP - 595 EP - 602 AN - OPUS4-35679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -